簡易檢索 / 詳目顯示

研究生: 林聖儒
Sheng-Ju Lin
論文名稱: 智動化揀貨系統貨架中不同產品組合下存貨單位之資料驅動方法
Data-Driven Approach for SKU Mixture in Pod for Robotic Mobile Fulfillment System
指導教授: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
口試委員: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 56
中文關鍵詞: 智動化揀貨系統儲存分配問題關聯規則元啟發式算法
外文關鍵詞: RMFS, Storage Assignment Problem, Association Rule, Metaheuristics
相關次數: 點閱:419下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子商務已經改變了全球的零售環境,統計到2022年底,由於COVID-19的影響,線上銷售已超過5.7兆美元。隨著線上購物的受歡迎程度提高,高效的倉儲變得越來越重要。傳統的倉庫經常無法跟上現代的需求,導致效率低下。但是,智動化揀貨系統(RMFS)這種新型揀貨系統中機器人運送商品確實提供了一個解決方案。由亞馬遜和阿里巴巴等行業巨頭採用的RMFS通過減少人工、提高揀貨率並加快訂單履行速度,比傳統設置提高了50%的生產力。
    此研究基於真實的RMFS資料集,並建立了三個不同規模和複雜性的訂單資料集。然後在所提議的關聯規則(AR)中使用這些資料集,該規則集成了基因演算法(GA)和粒子群最佳化演算法(PSO)方法。研究的實證結果顯示,在評估“中等訂單”資料集時,PSO方法優於GA,獲得更高的每個貨架的平均支持值。對於“大型訂單”資料集,PSO方法產生的平均支持值與GA大致相同,但PSO稍占優勢。
    通過檢查實驗結果,GA在“小型訂單”資料集中優於PSO,產生更高的每個貨架的平均支持值。相反,對於“中等訂單”資料集,PSO效果更佳,而在“大型訂單”場景中,PSO和GA產生的結果幾乎相同,PSO略具優勢。此外,從計算速度的角度看,由於其更簡單的突變機制,GA速度較快,而PSO在搜索空間內進行複雜的粒子調整則導致了更長的處理時間。


    E-commerce has transformed the global retail environment, with online sales expected to exceed $5.7 trillion by 2022, thanks partly to the COVID-19 lockdowns. As the popularity of online shopping grows, efficient warehousing becomes increasingly important. Traditional warehouses frequently fail to meet modern needs, resulting in inefficiencies. The Robotic Mobile Fulfillment System (RMFS), an automated system in which robots deliver merchandise, does, however, provide a solution. RMFS, adopted by industry titans such as Amazon and Alibaba, increases productivity by decreasing manual labor, improving pick rates, and expediting order fulfillment by 50% compared to traditional setups.
    This study is grounded on authentic RMFS datasets and constructs three-order datasets of varying scales and complexities. These datasets are then utilized in the proposed Associative Rule (AR) integrated with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methodologies. The study’s empirical findings show that the PSO approach outperforms GA while evaluating the “medium order” dataset, attaining a higher average support value per pod. For the “large order” dataset, the PSO approach produces approximately the same average support value per pod as GA. However, PSO has a little edge.
    Upon examining experimental results, the GA outperformed PSO in the “small order” dataset, yielding higher average support values per pod. Conversely, for the “medium order” dataset, PSO was more effective, while in the “large order” scenario, PSO and GA delivered nearly identical results, with PSO having a marginal edge. Additionally, in terms of computation speed, GA was faster due to its simpler mutation mechanism, whereas PSO’s intricate particle adjustments within the search space led to extended processing times.

    TABLE OF CONTENTS ABSTRACT I 摘要 II ACKNOWLEDGMENT III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Objective 4 1.3 Scope and Limitation 4 1.4 Organization of Thesis 4 CHAPTER 2 LITERATURE REVIEW 6 2.1 Robotic Mobile Fulfillment System 6 2.2 Decision Problems in RMFS 7 2.3 Storage Assignment Problem 9 2.4 Association Rule 10 2.5 Metaheuristics 11 2.5.1 Genetic Algorithm 12 2.5.2 Particle Swarm Optimization 14 CHAPTER 3 METHODOLOGY 16 3.1 Data Preprocessing 17 3.1.1 Lower and Upper Boundary 17 3.1.2 Fitness Using Association Rules Integration 18 3.2 Genetic Algorithm Implementation 19 3.3 Particle Swarm Optimization Implementation 22 CHAPTER 4 RESULTS AND DISCUSSION 24 4.1 Data Description 24 4.2 Parameter Setting 26 4.3 Pod Allocation 27 4.4 Experiment Results for Different Parameter Settings 27 4.5 Comparison between GA and PSO Results 34 CHAPTER 5 CONCLUSION 39 5.1 Conclusion 39 5.2 Future Research 40 REFERENCES 41

    [1] C. Guthrie, S. Fosso-Wamba, and J. B. Arnaud, “Online consumer resilience during a pandemic: An exploratory study of e-commerce behavior before, during and after a COVID-19 lockdown,” Journal of Retailing and Consumer Services, vol. 61, p. 102570, 2021/07/01/ 2021, doi: https://doi.org/10.1016/j.jretconser.2021.102570.
    [2] S. Chevalier. “Global retail e-commerce sales 2014-2026.” https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/ (accessed.
    [3] N. Boysen, R. de Koster, and F. Weidinger, “Warehousing in the e-commerce era: A survey,” European Journal of Operational Research, vol. 277, no. 2, pp. 396-411, 2019/09/01/ 2019, doi: https://doi.org/10.1016/j.ejor.2018.08.023.
    [4] M. Merschformann, T. Lamballais, M. B. M. de Koster, and L. Suhl, “Decision rules for robotic mobile fulfillment systems,” Operations Research Perspectives, vol. 6, p. 100128, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.orp.2019.100128.
    [5] J. J. Enright and P. R. Wurman, “Optimization and coordinated autonomy in mobile fulfillment systems,” presented at the Proceedings of the 9th AAAI Conference on Automated Action Planning for Autonomous Mobile Robots, 2011.
    [6] T. Lamballais, D. Roy, and M. B. M. De Koster, “Estimating performance in a Robotic Mobile Fulfillment System,” European Journal of Operational Research, vol. 256, no. 3, pp. 976-990, 2017/02/01/ 2017, doi: https://doi.org/10.1016/j.ejor.2016.06.063.
    [7] A. Silva, K. J. Roodbergen, L. C. Coelho, and M. Darvish, “Estimating optimal ABC zone sizes in manual warehouses,” International Journal of Production Economics, vol. 252, p. 108579, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.ijpe.2022.108579.
    [8] M. Mirzaei, N. Zaerpour, and R. B. M. de Koster, “How to benefit from order data: correlated dispersed storage assignment in robotic warehouses,” International Journal of Production Research, vol. 60, no. 2, pp. 549-568, 2022/01/17 2022, doi: 10.1080/00207543.2021.1971787.
    [9] R. de Koster, T. Le-Duc, and K. J. Roodbergen, “Design and control of warehouse order picking: A literature review,” European Journal of Operational Research, vol. 182, no. 2, pp. 481-501, 2007/10/16/ 2007, doi: https://doi.org/10.1016/j.ejor.2006.07.009.
    [10] A. Eckrot, C. Geldhauser, and J. Jurczyk, “A simulated annealing approach to optimal storing in a multi-level warehouse,” arXiv preprint arXiv:1704.01049, 2017.
    [11] F. T. S. Chan and H. K. Chan, “Improving the productivity of order picking of a manual-pick and multi-level rack distribution warehouse through the implementation of class-based storage,” Expert Systems with Applications, vol. 38, no. 3, pp. 2686-2700, 2011/03/01/ 2011, doi: https://doi.org/10.1016/j.eswa.2010.08.058.
    [12] L. B. S. Warren H. Hausman, Stephen C. Graves, “Optimal Storage Assignment in Automatic Warehousing Systems,” Management Science, 1976, doi: https://doi.org/10.1287/mnsc.22.6.629.
    [13] M. Mirzaei, N. Zaerpour, and R. de Koster, “The impact of integrated cluster-based storage allocation on parts-to-picker warehouse performance,” Transportation Research Part E: Logistics and Transportation Review, vol. 146, p. 102207, 2021/02/01/ 2021, doi: https://doi.org/10.1016/j.tre.2020.102207.
    [14] V. R. Muppani and G. K. Adil, “A branch and bound algorithm for class based storage location assignment,” European Journal of Operational Research, vol. 189, no. 2, pp. 492-507, 2008/09/01/ 2008, doi: https://doi.org/10.1016/j.ejor.2007.05.050.
    [15] F. Guerriero, R. Musmanno, O. Pisacane, and F. Rende, “A mathematical model for the Multi-Levels Product Allocation Problem in a warehouse with compatibility constraints,” Applied Mathematical Modelling, vol. 37, no. 6, pp. 4385-4398, 2013/03/15/ 2013, doi: https://doi.org/10.1016/j.apm.2012.09.015.
    [16] E. H. Frazelle, “Stock location assignment and order picking productivity,” Ph.D., Georgia Institute of Technology, United States -- Georgia, 9120762, 1989. [Online]. Available: https://www.proquest.com/dissertations-theses/stock-location-assignment-order-picking/docview/303773265/se-2?accountid=8014
    [17] M. Liu and K. L. Poh, “E-commerce warehousing: An efficient scattered storage assignment algorithm with bulky locations,” Computers & Industrial Engineering, vol. 181, p. 109236, 2023/07/01/ 2023, doi: https://doi.org/10.1016/j.cie.2023.109236.
    [18] J.-E. Justkowiak and E. Pesch, “Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems,” European Journal of Operational Research, vol. 305, no. 3, pp. 1063-1078, 2023/03/16/ 2023, doi: https://doi.org/10.1016/j.ejor.2022.06.051.
    [19] K. Wang, T. Hu, Z. Wang, Y. Xiang, J. Shao, and X. Xiang, “Performance evaluation of a robotic mobile fulfillment system with multiple picking stations under zoning policy,” Computers & Industrial Engineering, vol. 169, p. 108229, 2022/07/01/ 2022, doi: https://doi.org/10.1016/j.cie.2022.108229.
    [20] X. Yang, G. Hua, L. Hu, T. C. E. Cheng, and A. Huang, “Joint optimization of order sequencing and rack scheduling in the robotic mobile fulfilment system,” Computers & Operations Research, vol. 135, p. 105467, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.cor.2021.105467.
    [21] J. Lu, C. Ren, Y. Shao, J. Zhu, and X. Lu, “An automated guided vehicle conflict-free scheduling approach considering assignment rules in a robotic mobile fulfillment system,” Computers & Industrial Engineering, vol. 176, p. 108932, 2023/02/01/ 2023, doi: https://doi.org/10.1016/j.cie.2022.108932.
    [22] B. Bahrami, E.-H. Aghezzaf, and V. Limère, “Enhancing the order picking process through a new storage assignment strategy in forward-reserve area,” International Journal of Production Research, vol. 57, no. 21, pp. 6593-6614, 2019/11/02 2019, doi: 10.1080/00207543.2019.1567953.
    [23] H. Y. Fibrianto and S. Hong, “Dynamic order batching in bucket brigade order picking systems with consecutive batch windows and non-identical pickers,” International Journal of Production Research, vol. 57, no. 20, pp. 6552-6568, 2019/10/18 2019, doi: 10.1080/00207543.2019.1567948.
    [24] R.-Q. Zhang, M. Wang, and X. Pan, “New model of the storage location assignment problem considering demand correlation pattern,” Computers & Industrial Engineering, vol. 129, pp. 210-219, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.cie.2019.01.027.
    [25] R. Yuan, H. Wang, and J. Li, “The Pod Assignment Model and Algorithm in Robotic Mobile Fulfillment Systems,” in 2019 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), 6-8 Nov. 2019 2019, pp. 99-103, doi: 10.1109/SOLI48380.2019.8955103.
    [26] H. J. Kim, C. Pais, and Z. J. M. Shen, “Item Assignment Problem in a Robotic Mobile Fulfillment System,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 1854-1867, 2020, doi: 10.1109/TASE.2020.2979897.
    [27] F. Bindi, R. Manzini, A. Pareschi, and A. Regattieri, “Similarity-based storage allocation rules in an order picking system: An application to the food service industry,” International Journal of Logistics: Research and Applications, vol. 12, pp. 233-247, 08/01 2009, doi: 10.1080/13675560903075943.
    [28] K. L. Keung, C. K. M. Lee, and P. Ji, “Data-driven order correlation pattern and storage location assignment in robotic mobile fulfillment and process automation system,” Advanced Engineering Informatics, vol. 50, p. 101369, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.aei.2021.101369.
    [29] Z. Ma, G. Wu, B. Ji, L. Wang, Q. Luo, and X. Chen, “A Novel Scattered Storage Policy Considering Commodity Classification and Correlation in Robotic Mobile Fulfillment Systems,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 2, pp. 1020-1033, 2023, doi: 10.1109/TASE.2022.3178934.
    [30] J. Zhang, N. Zhang, L. Tian, Z. Zhou, and P. Wang, “Robots’ picking efficiency and pickers’ energy expenditure: the item storage assignment policy in robotic mobile fulfillment system,” Computers & Industrial Engineering, vol. 176, p. 108918, 2023/02/01/ 2023, doi: https://doi.org/10.1016/j.cie.2022.108918.
    [31] M.-C. Chen and H.-P. Wu, “An association-based clustering approach to order batching considering customer demand patterns,” Omega, vol. 33, no. 4, pp. 333-343, 2005/08/01/ 2005, doi: https://doi.org/10.1016/j.omega.2004.05.003.
    [32] Y. Li and Y. Li, “E-commerce order batching algorithm based on association rule mining in the era of big data,” in 2018 Chinese Control And Decision Conference (CCDC), 9-11 June 2018 2018, pp. 1934-1939, doi: 10.1109/CCDC.2018.8407443.
    [33] N. Yang, “Evaluation of the Joint Impact of the Storage Assignment and Order Batching in Mobile-Pod Warehouse Systems,” Mathematical Problems in Engineering, vol. 2022, p. 9148001, 2022/04/11 2022, doi: 10.1155/2022/9148001.
    [34] E. A. Frazele and G. P. Sharp, “Correlated assignment strategy can improve any order-picking operation,” Ind. Eng., vol. 21, no. 4, pp. 33–37, 1989.
    [35] D. Ming-Huang Chiang, C.-P. Lin, and M.-C. Chen, “Data mining based storage assignment heuristics for travel distance reduction,” Expert Systems, vol. 31, no. 1, pp. 81-90, 2014, doi: https://doi.org/10.1111/exsy.12006.
    [36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983/05/13 1983, doi: 10.1126/science.220.4598.671.
    [37] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press, 1975.
    [38] M. Dorigo, “Optimization, Learning and Natural Algorithms,” Ph.D. Thesis, Politecnico di Milano, 1992 1992. [Online]. Available: https://cir.nii.ac.jp/crid/1573950400977139328.
    [39] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995 1995, vol. 4, pp. 1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968.
    [40] J. C.-H. Pan, P.-H. Shih, M.-H. Wu, and J.-H. Lin, “A storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system,” Computers & Industrial Engineering, vol. 81, pp. 1-13, 2015/03/01/ 2015, doi: https://doi.org/10.1016/j.cie.2014.12.010.
    [41] C.-M. Hsu, K.-Y. Chen, and M.-C. Chen, “Batching orders in warehouses by minimizing travel distance with genetic algorithms,” Computers in Industry, vol. 56, no. 2, pp. 169-178, 2005/02/01/ 2005, doi: https://doi.org/10.1016/j.compind.2004.06.001.
    [42] E. Bottani, M. Cecconi, G. Vignali, and R. Montanari, “Optimisation of storage allocation in order picking operations through a genetic algorithm,” International Journal of Logistics Research and Applications, vol. 15, no. 2, pp. 127-146, 2012/04/01 2012, doi: 10.1080/13675567.2012.694860.
    [43] A. Vié, “Qualities, challenges and future of genetic algorithms: a literature review,” ArXiv, vol. abs/2011.05277, 2020.
    [44] C.-K. Huang, “Mining the change of customer behavior in fuzzy time-interval sequential patterns,” Appl. Soft Comput., vol. 12, pp. 1068-1086, 03/01 2012, doi: 10.1016/j.asoc.2011.11.017.
    [45] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Information Sciences, vol. 237, pp. 82-117, 2013/07/10/ 2013, doi: https://doi.org/10.1016/j.ins.2013.02.041.
    [46] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 12-15 Oct. 1997 1997, vol. 5, pp. 4104-4108 vol.5, doi: 10.1109/ICSMC.1997.637339.
    [47] S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “A hybrid particle swarm optimization for distribution state estimation,” IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 60-68, 2003, doi: 10.1109/TPWRS.2002.807051.
    [48] A. Noorul Haq, K. Karthikeyan, K. Sivakumar, and R. Saravanan, “Particle swarm optimization (PSO) algorithm for optimal machining allocation of clutch assembly,” The International Journal of Advanced Manufacturing Technology, vol. 27, no. 9, pp. 865-869, 2006/02/01 2006, doi: 10.1007/s00170-004-2274-5.
    [49] S. Önüt, U. R. Tuzkaya, and B. Doğaç, “A particle swarm optimization algorithm for the multiple-level warehouse layout design problem,” Computers & Industrial Engineering, vol. 54, no. 4, pp. 783-799, 2008/05/01/ 2008, doi: https://doi.org/10.1016/j.cie.2007.10.012.

    QR CODE