簡易檢索 / 詳目顯示

研究生: 江昱慶
Yu-Ching Chiang
論文名稱: 雙馬來醯亞胺/巴比妥酸聚合反應動力學:溶劑對麥克加成反應之效應
Kinetics of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid:Effect of solvents on Michael addition polymerizaion
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 黃延吉
Yan-Jyi Huang
許榮木
Jung-Mu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 153
中文關鍵詞: 雙馬來醯亞胺巴比妥酸麥克加成反應溶劑效應
外文關鍵詞: bismaleimide, barbituric acid, Michael addition reaction, solvent effect
相關次數: 點閱:435下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溶劑效應在有機反應中起著很重要的作用,選擇適合的溶劑可以加快反應速率、降低反應活化能等等,因此溶劑效應的研究愈來愈受到眾多關注。

    使用巴比妥酸引發的雙馬來醯亞胺聚合反應不能用傳統的自由基加成聚合反應加以描述,研究文獻說明巴比妥酸/雙馬來醯亞胺聚合反應受競爭的麥克加成反應與自由基加成聚合反應機制所主導。本研究主要針對不同鹼性溶劑系統對巴比妥酸引發之雙馬來醯亞胺聚合反應的影響,利用足量對苯二酚(Hydroquinone, HQ)抑制巴比妥酸/雙馬來醯亞胺聚合反應機制中之自由基加成反應,利用示差掃描熱分析儀針對雙馬來醯亞胺/巴比妥酸莫耳比為2:1(固含量:20.46%)時之麥克加成反應在不同的非質子極性溶劑中進行聚合反應動力學分析。

    以MATLAB模擬出來的kM (溫度範圍383K∼423K) 代入Arrhenius方程式可以得到麥克加成反應於不同溶劑之活化能Ea大小順序為NMP (38.40 kJ mole-1) < DMAC (54.32 kJ mole-1),顯示麥克加成(Michael addition)反應在鹼性溶劑系統中較文獻(66.30 kJ mole-1)【68】BMI熱聚合反應容易進行。

    此外,學長蘇恆磊在雙馬來醯亞胺/巴比妥酸莫耳比為2:1而未添加HQ情形下進行的聚合反應所計算出Ea為76.3 kJ mol-1【51】,這是因為麥克加成反應與自由基加成聚合反應同時激烈地競爭所導致的結果。


    Solvent effect plays important roles in many organic reactions. Selecting suitable solvent can enhancing reaction rate and reduce the activation energy, so the study of solvent effect has been received considerable attention.

    The N,N’-bismaleimide- 4,4’-diphenylmethane (BMI) polymerizations using barbituric acid (BTA) as the initiatior could not be adequately described by conventional free radical polymerization mechanisms. The references showed that the polymerizations of BMI with BTA were governed by the competitive Michael addition reaction and free radical polymerization mechanisms. This research was divided to study the effect of solvent basicity. With the addition of sufficient hydroquinone to completely suppress the free radical polymerization, the kinetics of Michael addition polymerizations of BMI and BTA with BMI/BTA = 2/1 (mol/mol)(solid content : 20.46%) in different aprotic polar solvents was investigated by the differential scanning calorimeter.

    Michael addition polymerization rate constants in the temperature range 383K-423K was simulated by MATLAB and substituted into Arrhenius equation can be calculate the activation energy in different solvents. The order of NMP (38.40 kJ mole-1) < DMAC (54.32 kJ mole-1). These two values of Ea are much lower than that (66.3 kJ mol-1) of literature [68]. The results showed Michael addition polymerization easy to carry out in alkaline solvent than thermal polymerization.

    In addition, (76.3 kJ mol-1) of the polymerizations of BMI/BTA (2/1 (mol/mol)) in the absence of HQ reported in our previous work [51]. This is because the competitive Michael addition and free radical polymerization mechanisms are operative simultaneously in the latter BMI/BTA polymerization system.

    總目錄 摘要...........................................................................I Abstract.....................................................................III 致謝...........................................................................V 總目錄.........................................................................VI 表目錄..........................................................................X 圖目錄.......................................................................XIII 符號說明......................................................................XVI 第一章 緒論.....................................................................1 1.1 聚醯亞胺高分子...............................................................1 1.1.1 文獻回顧..................................................................1 1.1.2 相關合成..................................................................3 1.1.3 基本特性.................................................................11 1.2 雙馬來醯亞胺(Bismaleimide, BMI)............................................12 1.2.1 文獻回顧.................................................................12 1.2.2 反應類型簡介..............................................................13 1.2.3 基本性質.................................................................19 1.3 巴比妥酸(barbituric acid, BTA)............................................20 1.3.1 文獻回顧.................................................................20 1.3.2 酮式-烯醇式互變異構物......................................................21 1.3.3 相關藥物及反應類型.........................................................23 1.4 對苯二酚(Hydroquinone, HQ)介紹.............................................25 1.5 溶劑效應...................................................................26 1.6 研究動機及目的..............................................................28 第二章 理論分析................................................................30 2.1 溶劑系統:酸鹼理論...........................................................31 2.1.1 阿瑞尼士酸鹼理論...........................................................32 2.1.2 布朗斯特-勞里酸鹼質子理論...................................................33 2.1.3 路易士酸鹼電子理論.........................................................34 2.1.4 醯胺(Amide)的鹼性.......................................................35 2.1.5 酸鹼強度的判定:質子親和力….................................................36 2.2 溶劑效應對有機反應的影響......................................................37 2.2.1 質子轉移(proton transfer, PT)...........................................38 2.2.1 介電常數.................................................................39 2.3 麥克加成(Michael addition)反應介紹.........................................40 2.3.1 文獻回顧.................................................................41 2.3.2 在鹼催化下之麥克加成(Michael addition)反應.................................42 第三章 實驗藥品、儀器與步驟.......................................................44 3.1 實驗藥品...................................................................44 3.2 相關儀器使用................................................................49 3.3 實驗內容...................................................................50 3.3.1 密度測定.................................................................50 3.3.2 DSC樣品配置方式...........................................................52 3.3.3.1 BMI/BTA/HQ/solvent....................................................52 3.3.3.2 BTA/HQ/solvent........................................................52 3.3.3 自由基加成聚合反應抑制實驗..................................................52 3.3.4 麥克加成(Michael addition)反應:BTA活性氫消耗過程之動力學分析.................53 3.3.5 麥克加成(Michael addition)反應:BTA活性氫位置初始濃度定量....................54 3.3.6 麥克加成(Michael addition)反應:反應轉化率貢獻與反應動力學參數計算.............55 3.4 BMI/BTA聚合反應動力學模式之建立...............................................57 第四章 結果與討論................................................................62 4.1 密度測定:體積莫耳濃度計算....................................................62 4.2 BMI/BTA聚合反應總放熱與自由基加成反應的抑制.....................................64 4.3 麥克加成(Michael addition)反應:BTA活性氫位置初始濃度.........................65 4.4 麥克加成(Michael addition)反應:BTA活性氫消耗過程之動力學分析...................77 4.5 麥克加成(Michael addition)反應:反應動力學參數計算及活化能之探討.................87 4.6 麥克加成(Michael addition)反應:MATLAB模擬與實驗反應轉化率之差異................99 4.7 麥克加成(Michael addition)反應:活化能與質子親和力關係........................101 第五章 結論與建議...............................................................103 5.1 結論.....................................................................103 5.2 未來工作建議...............................................................105 參考文獻......................................................................106 附錄.........................................................................111

    參考文獻
    1. D. Wilson, H. D. Stenzenberger, P. M. Herger,〝Polyimides,〞Chapman and Hall, New York (1990).
    2. R. Rubber, H. Ahne, and Kolodziej, Photogr. Sci, Eng., 23, 303 (1979).
    3. C. Feger, M. M. Khojasteh, and J. E. McGrath, Eds.,〝Polyimides:“Material, Chemistry, and Characterization,〞Elsevier, New York, 1989.
    4. R. W. Lauver, J. Polym. Sci., 17, 2529 (1979).
    5. T. Matsuura, Y. Hasuda, S. Nishi, and N. Yamada, Macromolecules, 24, 5001 (1991).
    6. D. Sek, P. Pijet, and A. Wanic, Polymer, 33, 190 (1992).
    7. D. Sek, A. Wanic, and E. Schab-Balcerzak, J. Polym. Sci. Part A: Polym. Chem., 33, 547 (1995).
    8. C. P. Yang, J. H. Lin, J. Polym. Sci. Part A: Polym. Chem., 33, 2183 (1995).
    9. M.K. Ghosh, K.L. Mittal.; Marcel Dekker Inc., 1-6 (1996).
    10. J. P. Gao, Z. Y. Wang, J. Polym. Sci. Part A: Polym. Chem., 33, 1627 (1995).
    11. C. Gao, M. Paventi, and A. S. Hay, J. Polym. Sci. Part A: Polym. Chem., 34, 413 (1996).
    12. F. C. Loh, C. B. Lau, K. L. Tan, and E. T. Kang, J. Appl. Polym. Sci., 56, 1707 (1995).
    13. M. Konas, T. M. Moy, M. E. Rogers, A. R. Shultz, T. C. Ward, and J. E. McGrath, J. Polym. Sci. Part B: Polym. Phys., 33, 1429 (1995).
    14. K. L. Mittal, Ed.,〝Polyimides: Synthesis, Characterization, Application,〞vols. 1 and 2., Plenum, New York (1984).
    15. M. I. Bessonv, M. M. Kotton , V. V. Kudryavtsev , L. A. Laius,〝Polyimides: Thermally Stable Polymers,〞Consultants Bureau, New York (1987).
    16. C. S. Wang, C. H. Lin, J. Polym. Sci., Polym. Chem., 37, 3903 (1999).
    17. Y. L. Liu, G. H. Hsiue, C. W. Lan, Y. S. Chiu, Polym. Deg. Stab., 56, 291 (1997).
    18. L. T. Pappalardo, J. Appl. Polym. Sci., 212, 809 (1977).
    19. S. J. Chang, F. C. Chang, Polym. Engng. Sci., 38, 1471 (1998).
    20. R. W. Lauver, J. Polym. Sci. Polym. Chem., 17, 2529 (1979).
    21. H. D. Stenzberger, Brit. Polym. J., 15, 1 (1979).
    22. M. I. Bessonov, M. M. Koton, V. V. Kudryavtser and L. A. Laius, Polyimides Thermally Stable Polymer, Consultans Buregu, N. Y. (1987).
    23. C.S. Wu, Y. L. Liu, Y. S. Chiu, Polymer, 43, 4277 (2002).
    24. H. K. Shobha, H. Johnson, M. Sankarapandian, Y. S. Kim, P. Rangarajan, D. G. Baird, J. E. Mcgrath, J. Polym. Sci. Polym. Chem., 39, 2904 (2001).
    25. W. J. Shu, L. H. Perng, W. K. Ckin, J. Appl. Polym. Sci., 83,1919 (2002).
    26. D. S. Kim, M. J. Han, J.R. Lee, Polym. Eng. Sci., 35, 1353 (1995).
    27. A. Nagai, A. Takahashi, M. Wajima, K. Tsukanish, Polym. J., 21, 809 (1988).
    28. Y. L. Liu, G. H. Hsiue, Y. S. Chiu, R. J. Jeng, J. Appl. Polym. Sci., 61, 1789 (1996).
    29. M. Banks, J. R. Ebdon, M. Tohson, Polymer, 35, 3470 (1994).
    30. J. C. Tang, Preparation and properties of polyimide composites & phosphorous-containing bismaleimide flame resistant materials, Chung Yuan Christian University (2006).
    31. W. J. Shu, The research of synthesis and application of hosphonate-containing maleimide resin, National Tsing Hua University (2001).
    32. K. S. Chian, X. Y. Du, H. A. Goy, J. L. Feng, S. Yi, C. Y. Yue, J. Appl. Polym. Sci., 85, 2935 (2002).
    33. 徐武軍,《高分子材料導論》初版,台北市:五南圖書出版社,pp 9-10,2004。
    34. B. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Prog. Polym. Sci., 31, 487 (2006)
    35. J. V. Crivello, J. Polym. Sci. Part A: Polym. Chem., 11, 1185 (1973).
    36. K. Alder, et al. Ber., 76, 27 (1943).
    37. H. Tang, W. Li, X. Fan, X. Chen, Z. Shen, Q. Zhou, Polymer, 50, 1414 (2009).
    38. M. L. Szalai, D. V. McGrath, D, R, Wheeler, T. Zifer, J. R. McElhanon, Macromolecules, 40, 818 (2007).
    39. Baeyer.,〝Untersuchungen uber die Harnsauregruppe,〞Annalen der Chemie und Pharmacie,131: 291 (1864).
    40. 劉文英,藥物分析,北京:人民衛生出版社,pp 112-130,2007。
    41. 曾昭瓊,《有機化學》第四版上冊,北京:高等教育出版社,2005。
    42. W. O. Foye, T. L. Lemke, D. A. Williams, Principles of Medicinal Chemistry, 4th ed., pp 88-180 (1995).
    43. S. B. Rathod, A. B. Gambhire, B. R. Arbad, M. K. Lande, Bulletin of the Korean Chemical Society, 31(2), 339 (2010).
    44. T. Kolev, R. Bakalska, R. W. Seidel, H. Mayer-Figge, I. M. Oppel, M. Spiteller, W. S. Sheldrick, B. B. Koleva, Tetrahedron: Asymmetry, 20, 327 (2009).
    45. Jean-Marie Lehn,《超分子化學》二版,北京:北京大學出版社,pp 171,2006。
    46. G. M. Whitesides, J. P. Mathias, C. T. Seto, Science, 254, 1312 (1991).
    47. 《化工百科全書》編輯委員會,化工百科全書,北京:化學工業出版社,pp 351-368,1990。
    48. 化學工業出版社組織編寫,《中國化工產品大全》第三版,北京:化學工業出版社,pp 187,2005。
    49. R. Christian, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim/English, 2003.
    50. J. P. Pan, G. Y. Shiau, S. S. Lin and K. M. Chen, J. Appl. Polym. Sci., 45, 103 (1992).
    51. H. L. Su, J. M. Hsu, J. P. Pan, T. H. Wang, E. F. Yu and C. S. Chern, Polym. Eng. and Sci., 51, 1188 (2011).
    52. 赫海伊原著;謝從卿,王文竹譯,《無機化學》上冊,安和出版社,1988。
    53. L. M. Miessler, D. A. Tarr,〝norganic Chemistry〞2nd ed. Pearson Prentice-Hall, pp. 165 (1991).
    54. 沈敦瑜,《無機化學》,台北縣中和市:新文京開發,2003。
    55. T. Zeegers-Huyskens, Journal of Molecular Structure, 177, 125 (1988).
    56. 王芹珠,楊增家,《有機化學》,北京清大化學出版社,pp. 203,1996。
    57. 王麗雅,氫鍵結與質子化對分子內電荷轉移化合物的影響,國立嘉義大學應用化學系,2006。
    58. E. P. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 27, 413 (1998).
    59. Taminco, Technical Data Sheet (www.taminco.com).
    60. S. Tokura, N. Nishi, S. Nishimura, Y. Ikeuchi, J. Polym., 15, 553 (1983).
    61. J. Pavlinec, N. Moszner, J. Polym. Sci. Part A: Polym. Chem., 10, 165 (1997).
    62. S.C.Rizzi, J. A. Hubbell, Biomacromolecules, 6, 1226 (2005).
    63. A. Michael, J. Am. Chem. Soc., 9, 115 (1887).
    64. B. Vernon, N. Tirelli, T. Bachi, D. Haldimann, J. Hubbell, Journal of Biomedical Materials Research Part A: J Biomed Mater Res., 64, 447 (2003).
    65. C. Gimbert, M. Lumbierres, C. Marchi, M. Moreno-Manas, R. M. Sebastian, A. Vallribera, Tetrahedron, 61, 598 (2005).
    66. N. F. Albertson, J. Am. Chem Soc., 70, 669 (1948).
    67. M. Park and Y. Kim, Thin Solid Films, 363, 153 (2000).
    68. J. M. Barton, I. Hamerton, J. B. Rose and D. Warner, Polym., 33, 3664 (1991).
    69. H. L. Su, J. M. Hsu, J. P. Pan, C. S. Chern, J. Appl. Polym. Sci., 103, 3600 (2007).

    QR CODE