簡易檢索 / 詳目顯示

研究生: 陳顥
Hao Chen
論文名稱: 鋼筋混凝土KC柱之耐震圍束性能研究
Study on Seismic Performance for Confinement of RC KC Column
指導教授: 林克強
Ker-Chun Lin
口試委員: 邱建國
Chien-Kuo Chiu
王勇智
Yung-Chih Wang
李宏仁
Hung-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 200
中文關鍵詞: 鋼筋混凝土柱KC柱核心主筋混凝土橫向應變變形諧和性
外文關鍵詞: RC column, KC column, KC bar, lateral strain of concrete, harmonic deformation
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內現行實務設計中為了增加空間上的使用,柱斷面不宜過大;為了提升彎矩設計容量,將柱主筋排列於外緣,高樓建築中需承受高軸壓力的低樓層柱構件其斷面配置形式可能因鋼筋壅塞導致混凝土澆置品質不佳、配置細節衝突等情況發生。受地震力作用下,柱構件混凝土保護層剝落後外緣主筋外露進而使縱向主筋挫屈強度降低,此等現象皆不利於柱構件耐震性能,影響建物安全性。本文共測試6組斷面為600×600 mm之RC柱構件實尺寸試體,材料使用抗壓強度42 MPa之混凝土,SD550W之縱向主筋與SD785之橫向鋼筋,將柱構件部分配置於外緣之主筋移至混凝土圍束核心區內部,形成利用核心區的混凝土圍束主筋之柱構件(kernel confine steel bars column, KC Column),以KC柱之形式改善現行實務配置缺陷。本研究根據ACI 318-19規範,軸力控制之圍束公式進行設計,並施加依實際圍束鋼筋量計算所得之軸壓力進行試驗。試驗結果顯示,KC柱之配置形式加大外緣主筋間距,有效解決繫筋衝突所導致的施工困難;6組試體為軸向承壓之破壞模式,f'c小於70 MPa之試體fyt採用690 MPa仍無法提供預期強度與變形容量,乃因混凝土橫向極限之應變與圍束鋼筋發展至設計強度之應變不一致所致,在混凝土橫向極限拉應變發生時,圍束鋼筋尚無法驅動設計圍束力而發展顯著縱向裂縫並失去承載能力,混凝土與圍束鋼筋橫向變形的諧和性應為影響柱構件變形能力的重要因素;核心主筋KC bar於較大之側向變形下進入非彈性挫屈,有效延緩主筋挫屈行為發生,柱構件試體之變形性能隨KC bar之比例增加而提升,主筋比為2.82%下,KC bar佔總縱向鋼筋量達40%時,尚能延緩主筋挫屈行為的發生;圍束細節中使用一端90°、一端180°彎鉤之繫筋與皆使用閉合箍筋或銲接閉合型箍筋進行圍束之變形性能相近;KC柱之配置形式較傳統主筋配置於外緣之形式具較穩定的軸向勁度表現;尖峰位移角0.75%弧度前側向勁度約成等比例衰減。


    In order to increase the use of space and the moment capacity of column members, the dimension of the lower-story columns of high rise building should not be too large and the longitudinal reinforcement shall be arranged around the perimeter of the cross section. Closely arranged reinforcement may not permit concrete to flow readily into short spacing between bars, and besides, confinement provisions of crossties in the current building code may cause difficult while fabricating reinforcement cage. Spalling of the concrete cover expose the longitudinal reinforcement around the perimeter of the cross section of column decrease the bar buckling restraint under earthquake actions. These damage are not conducive to the seismic performance of column members. Safety of building may be affected. This study investigated 6 full-scale specimens(600×600 mm) of RC columns made up of concrete withf'c=42 MPa, longitudinal reinforcement with fy=550 MPa, transverse reinforcement with fyt=790 MPa. Part of the longitudinal bars arranged around the perimeter of the cross section of the column members are moved to the inside of the concrete core. Confining the longitudinal bars by kernel concrete(kernel confine steel bars column, KC Column). The purpose of KC Column is to improve the defect of current building code. The amount of transverse reinforcement calculated from the column axial force control equation according to ACI 318-19 Building Code. The test is carried out by applying the axial load calculated according to the actual amount of transverse reinforcement. Based on test observations, increasing the spacing of the longitudinal bar around the perimeter of the cross section by KC Column solved the difficulty caused by the confinement provisions of crosstie. Six columns are in the axial compression failure mode. Specimens with concrete strength f'c<70 MPa could not satisfy the performance target of 3% drift ratio, even though the design strength of transverse reinforcement is 690 MPa. Because of the longitudinal limit strain of transverse reinforcement and the lateral limit strain of concrete are not consistent, transverse reinforcement can’t achieve longitudinal limit strain when concrete achieve the lateral limit strain. Then columns may fail in axial cracking due to ineffective confinement. The harmonic deformation between concrete and reinforcement plays an important part in sustaining column drift ratio with limited strength degradation. Compared to the bar around the perimeter of the cross section, KC bar occur inelastic buckling under higher drift ratio which effectively delays the buckling. The performance of the column specimen increase with the increase of the proportion of KC bar. The ratio of longitudinal reinforcement for six specimen are 2.82%.The ratio of 40% of the KC bar to all bars of the cross section is suitable for high axial load. In terms of performance, the confinement provision that crosstie with seismic hook at one end and a 90-degree hook at the other end is similar to hoop or power ring. Axial stiffness of KC column is more stable than traditional provision that configure the longitudinal bar around the perimeter of the cross section. Lateral stiffness decays approximately proportionally before drift ratio 0.75%.

    摘要 ABSTRACT 目錄 表目錄 圖目錄 照片目錄 第一章 緒論 1.1研究動機 1.2研究目的與方法 第二章 文獻回顧 2.1圍束公式 2.1.1現行土木401-110圍束公式 2.1.2現行土木401-110圍束細節 2.1.1現行土木401-110圍束公式 2.1.2現行土木401-110圍束細節 2.1.3美國ACI 318圍束規定比較 2.2 圍束模型 2.2.1 Theoretical Stress-Strain Model For Confined Concrete(1988) 2.3圍束性能 2.3.1 Uniaxial Confinement Model for Normal-and High-Strength Concrete Columns(2003) 2.3.2 Confinement Reinforcement Design for Reinforced Concrete Columns (2008) 2.3.3 Improving Column Confinement (2009) 2.3.4 Design of Seismic Confinement of Reinforced Concrete Columns Using High Strength Materials(2013) 2.4 剪力強度 2.4.1 標稱剪力強度 2.4.2 Stress Limit for Shear Reinforcement of High-Strength Columns(2022) 2.5彎矩強度 2.5.1標稱彎矩強度 2.6國內鋼筋混凝土柱構件相關研究 2.6.1鋼筋混凝土柱構件之圍束與強度耐震性能提升研究(2018) 2.6.2高強度混凝土柱於高軸力作用下之耐震行為(2020) 2.6.3鋼筋混凝土雙核心柱於高軸力下之耐震性能研究(2020) 2.6.4具核心圍束鋼筋之高強度矩形RC柱研究(2021) 2.6.5鋼筋混凝土柱構件双核柱圍束改良工法性能試驗研究(2021) 第三章 試驗計畫 3.1試體介紹 3.2探討方向 3.3試體製作 3.3.1材料準備 3.2.2鋼筋加工 3.3.3應變計黏貼 3.3.4鋼筋籠綁紮與混凝土澆置 3.4試驗系統 3.5量測系統 3.5.1外部量測 3.5.2內部量測 3.6試驗程序 3.6.1軸壓反復載重試驗 3.6.2水平反復漸增位移載重試驗 3.7材料試驗 3.7.1鋼筋材料試驗 3.7.2混凝土材料試驗 3.8鋼筋衝突 3.8.1圍束形式差異 3.8.2鋼筋衝突檢討 第四章 試驗過程 4.1 SP1K0S2D5試驗過程與裂縫發展 4.2 SP2K2S2D5試驗過程與裂縫發展 4.3 SP3K4S0D5試驗過程與裂縫發展 4.4 SP4K4S0D5試驗過程與裂縫發展 4.5 SP5K4S0D5試驗過程與裂縫發展 4.6 SP6K0S0D5試驗過程與裂縫發展 第五章 分析與討論 5.1強度反應 5.1.1試體強度反應討論 5.1.2試體破壞模式 5.2變形性能 5.2.1試體變形性能討論 5.2.2變形性能與圍束之關係討論 5.3試體勁度 5.3.1軸向勁度 5.3.2側向勁度 5.4裂縫發展 5.4.1各試體裂縫發展 5.4.2裂縫發展比較 5.5應變計發展 5.5.1縱向主筋應變計 5.5.2橫向鋼筋應變計 5.6柱主筋握裹長度 第六章 結論與建議 6.1結論 6.2建議 參考文獻 附錄A 各試體於各尖峰位移角3迴圈結束後之試驗照片 附錄B 各試體之試體設計圖與應變計配置圖 附錄C 各試體之應變計發展趨勢與比較 附錄D 鋼筋伸長率

    1. American Concrete Institute (2008, 2011, 2014, 2019), Building Code Requirements for Structural Concrete and Commentary, ACI 318, Farmington Hills, Michigan.
    2. American Society of Civil Engineers (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Standard ASCE/SEI 7, Reston, Virginia.
    3. Canadian Standards Association (2004), Design of Concrete Structures, CSA A23.3, Mississauga, Canada.
    4. Standards Association of New Zealand (2016), Part 1 : The design of concrete structures, NZS 3101, Wellington, New Zealand.
    5. Standards Association of New Zealand (2006), Part 2 : Commentary on the Design of Concrete Structure, NZS 3101, Wellington, New Zealand.
    6. American Concrete Institute Innovation Task Group (2007), Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications, ITG-4.3R, Farmington Hills, Michigan.
    7. Aoyama, H. (2002), “Design of Modern High-rise Reinforced Concrete Structures,” Imperial College Press, London.
    8. S. H. Ahmad and S. P. Shan (1985), ”Behavior of Hoop Confined Concrete Under High Strain Rates,” Journal of the American Concrete Institute, Vol. 80, NO.5, pp. 634-647.
    9. J. B. Mander, M.J.N. Priestly, and R. Park (1988), “Theoretical Stress-Strain Model For Confined Concrete,” Journal of Structural Engineering, 114(8), pp. 1804-1826.
    10. Priestley, M.J.N., Seible, F. and Calvi, G-M (1996), Seismic Design and Retrofit of Bridges, John Wiley and Sons, New York.
    198
    11. M.J.N. Priestly (2000), “Performance Based Seismic Design,” 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Paper No.2831.
    12. Sakai, K., and Sheikh, S. A. (1989), “What Do We Know about Confinement in Reinforced Concrete Column? (A Critical Review of Previous Work and Code Provisions),” Journal of the American Concrete Institute, V. 86, No. 2, pp. 192-207.
    13. Murat Saaticioglu and Salim R. Razvi (2002), “Displacement-Based Design of Reinforced Concrete Columns for Confinement.” Journal of the American Concrete Institute, V. 99, No.1, pp.3-11.
    14. Légeron, F., and Paultre, P, (2003) “Uniaxial confinement model for normal and high-strength concrete columns.” Journal of Structural Engineering, 129(2), pp. 241-252.
    15. Paultre, P.; and Légeron, F. (2008), “Confinement Reinforcement Design for Reinforced Concrete Columns,” Journal of Structural Engineering, V. 134, No. 5, pp. 738-749.
    16. Elwood, K.J., and Maffei, J.M., and Riederer, K.A., and Telleen, K. (2009), “Improving Column Confinement—Part 1: Assessment of design provisions,” American Concrete Institute Concrete International, V. 31, No. 11, pp. 32-39.
    17. Elwood, K.J., and Maffei, J., and Riederer, K.A., and Telleen, K. (2009), “Improving Column Confinement-Part2: Proposed new provisions for the ACI 318 Building Code,” American Concrete Institute Concrete International, V. 31, No. 12, pp. 41-48.
    18. Shyh-Jiann Hwang, Guann-Jye Hwang, Feng-Chan Chang, Ying-Chang Chen, Ker-Chun Lin (2013), “Design of Seismic Confinement of Reinforced Concrete Columns Using High Strength Materials,” American Concrete Institute Special Publication, Vol. 293, pp. 1-14.
    199
    19. Ou, Y.-C., and Nguyen Van Bao Nguyen (2022), “Stress Limit for Shear Reinforcement of High-Strength Columns,” Journal of the American Concrete Institute, V.119, No 1, pp.131-143.
    20. Ichinose, T. (1995), “Splitting Bond Failure of Columns under Seismic Action,” Journal of the American Concrete Institute, V. 92, No. 5, pp. 535-541.
    21. Sokoli, D., and Ghannoum, W. M. (2016), “High-Strength Reinforcement in Columns under High Shear Stresses,” Journal of the American Concrete Institute, V. 113, No. 3, pp. 605-614.
    22. 內政部營建署(2020),「混凝土結構設計規範」,台北市。
    23. 中國土木水利工程學會(2021),「混凝土工程設計規範與解說」,臺北市
    24. 中華民國結構工程學會(2017),「高強度鋼筋混凝土結構設計手冊」,科技圖書公司,新北市。
    25. 中華民國國家標準(CNS)(2018),「鋼筋混凝土用鋼筋, Steel bars for concrete reinforcement」,CNS 560,中華民國經濟部標準檢驗局,2018。
    26. 陳勇亲(2018),「鋼筋混凝土柱構件之圍束與強度耐震性能提升研究」,國立台灣科技大學營建工程系碩士論文。
    27. 李宏仁(2019),「新高強度鋼筋混凝土矩形柱受軸力及雙軸彎矩之校核程式開發」,混凝土工程研討會,台北市。
    28. 沈文成(2020),「高強度鋼筋混凝土柱於高軸力作用下之耐震行為」,中華民國結構工程及地震工程研討會,台南市。
    29. 林克強(2020),「鋼筋混凝土雙核心柱於高軸力下之耐震性能研究」,鋼筋混凝土與鋼結構設計技術研討會,台北市。
    30. 林克強(2021),「鋼筋混凝土柱構件双核柱圍束改良工法性能試驗研究」,國家地震工程研究中心,台北市。
    31. 黃竣楷(2021),「具核心圍束鋼筋之高強度矩形RC柱研究」,國立台灣科技大學營建工程系碩士論文。
    200
    32. 黃竣楷(2021),「高強度RC柱含核心鋼筋之耐震性能」,混凝土工程研討會,高雄市。
    33. 張豐展(2010),「高強度鋼筋混凝土圍束效應研究」,國立台灣大學土木系碩士論文。
    34. 陳盈璋(2011),「高強度 RC柱耐震圍束效應之研究」,國立台灣大學土木系碩士論文。
    35. 黃冠傑(2013),「 RC柱耐震圍束之研究」,碩士論文,國立台灣大學土木系碩士論文。
    36. 廖苑儀(2014),「普通強度 RC柱耐震圍束之研究」,國立台灣大學土木系碩士論文。

    無法下載圖示 全文公開日期 2025/09/26 (校內網路)
    全文公開日期 2027/09/26 (校外網路)
    全文公開日期 2027/09/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE