簡易檢索 / 詳目顯示

研究生: 賴柏勳
Bo-Syun Lai
論文名稱: 分類式濾波器群色彩濾波矩陣解馬賽克後補償技術與加速式參數導向區域直方圖等化技術
Classified-Filter-based Post-Compensation Scheme for Color Filter Array Demosaicing and Speed-Up Parametric-Oriented Histogram Equalization
指導教授: 郭景明
Jing-Ming Guo
口試委員: 謝君偉
Jun-Wei Hsieh
丁建均
Jian-Jiun Ding
王乃堅
Nai-Jian Wang
徐繼聖
Gee-Sern Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 99
中文關鍵詞: 色彩濾波矩陣最小均方演算法解馬賽克法色彩內插法貝氏樣板影像強化直方圖等化對比強化積分圖參數導向直方圖等化
外文關鍵詞: Color filter array, least mean squares, demosaicing, color interpolation, Bayer pattern, Image enhancement, histogram equalization, contrast enhancement, integral image, parametric-oriented histogram equalization
相關次數: 點閱:302下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文有兩大貢獻,分別為分類式濾波器群色彩濾波矩陣解馬賽克後補償技術與加速式參數導向區域直方圖等化技術,簡述如下:
分類式濾波器群色彩濾波矩陣解馬賽克後補償技術在本論文前半部進行說明,這個技術能夠進一步有效的改善既有解馬賽克技術的影像品質。此技術首先會將每個像素點根據其周圍的角度以及梯度強度來做分類,接著每個分類群組會各自利用最小均方演算法(Least-Mean-Square, LMS)去訓練其濾波器。從實驗數據中可以很明顯的看出,本論文所提出之技術可以大幅的提升影像品質,此外也有著較佳的視覺感。值得注意的是,本論文所提出之後補償架構可以有效的應用在任何前人所提出之解馬賽克法,來達到更佳的影像品質。
本論文後半部份介紹所提出的兩個區域對比強化技術,分別為參數導向直方圖等化(Parametric-Oriented Histogram Equalization, POHE)以及校準式參數導向直方圖等化(Correct Parametric-Oriented Histogram Equalization, CPOHE)技術,二者都能夠有效且準確的取得對比強化結果。基本上影像某區域的灰階分佈情形可以用特定的核心函數來塑造,如高斯函數(Gaussian function),並利用其相對應的累積密度函數(Cumulative Density Function, CDF)當成用來做對比強化處理的轉換函數曲線來增強影像。然而其在核心函數相關參數計算上需要存取區域內所有像素點,造成許多額外的計算,為了解決此問題,本論文利用積分圖的概念(integral image)來化簡並加速參數的取得。為了更進一步改善區域對比,本論文所提出之CPOHE利用分類以及迴歸分析的方式來校準轉換函數以減少誤差。在實驗結果中,幾個過往有名的技術皆列入比較,且結果證明本技術在醫學影像和電腦視覺領域裡有高度的實行價值。


In this thesis, two contributions are delivered, including Classified-Filter-based Post-Compensation Scheme for Color Filter Array Demosaicing, and Speed-Up Parametric-Oriented Histogram Equalization.
In the first half, a classified-filter-based post-compensation scheme for color filter array (CFA) demosaicing is proposed. This technique can be used for improving the image quality of the interpolated result obtained by any former demosaicing method. First, each pixel is classified according to its neighborhood’s magnitude and angle. Then, different Least-Mean-Square (LMS) filters are trained for dealing pixels of various characteristics. As documented in the experimental results, the proposed scheme can substantially boost the image quality; in addition, a better visual perception can be obtained. Notably, the proposed method can be considered as effective post-compensation by applying for any former schemes to yield an even better image quality.
In the second half, two local contrast enhancement methods, namely Parametric-Oriented Histogram Equalization (POHE) and the Correct POHE (CPOHE), are proposed to effectively acquire the enhanced results while maintaining high accuracy on the contrast. The grayscale distribution of a specific region in an image can be modeled with a kernel function such as the Gaussian, thus the corresponding estimated cdf can be regarded the transformation function for contrast enhancement. However, the required parameters are still required by accessing all of the pixels, and thus consuming additional computations. To cope with this, the concept of integral image is adopted to effectively derive the required parameters. For further improving the local contrast, the distortion induced from the aforementioned cdf is analyzed, and it is further corrected by the proposed CPOHE through the concepts of classification and regression. In the experimental results, some former well-known methods are adopted for comparison, and it also demonstrates that the proposed methods provide high practical value for some active territories such as medical imaging and computer vision.

摘要 Abstract 誌謝 目錄 圖表索引 第一章 緒論 1.1 研究背景與動機 1.2 研究目的 1.3 論文架構 第二章 色彩濾波矩陣解馬賽克技術 2.1 彩色影像成像架構 2.1.1 場序式(Field sequential) 2.1.2 多晶片式(Multi-Chip) 2.1.3 Foveon X3 2.1.4 色彩濾波矩陣(Color Filter Array, CFA) 2.2 解馬賽克技術 2.2.1 最近鄰取代法(Nearest-Neighbor Replication, NN) 2.2.2 雙線性內插法(Bilinear Interpolation, BI) 2.2.3 邊緣方向高階內插法搭配權重中值濾波器(Edge-Directed High-Order Interpolation With Median Filter, WM-HOI) 第三章 直方圖等化技術 3.1 傳統直方圖等化技術(Traditional histogram equalization, THE) 3.2 部分重疊子區塊直方圖等化技術(Partially Overlapped Sub-block Histogram Equalization, POSHE) 3.3 串接式之多步驟二項式濾波直方圖等化技術(Cascaded Multistep Binomial Filtering Histogram Equalization, CMBFHE) 3.4概括式適應性直方圖等化技術(Generalization of Adaptive Histogram Equalization, GAHE) 第四章 分類式濾波器群色彩濾波矩陣解馬賽克後補償技術 4.1 特徵分類 4.1.1 區域角度(Local Angle) 4.1.2 區域梯度強度(Local Gradient Magnitude) 4.1.3 樣本變異數(Pattern Variance) 4.1.4 最大邊緣方向(Maximum Edge Direction) 4.2 最小均方演算法(Least Mean Square, LMS) 4.3 後補償(Post-Compensation) 4.4 實驗結果 第五章 加速式參數導向區域直方圖等化技術 5.1 參數導向直方圖等化技術( Parametric-Oriented Histogram Equalization, POHE) 5.2 積分圖(Integral Image) 5.3 校準式參數導向直方圖等化技術( Corrected Parametric-Oriented Histogram Equalization, CPOHE) 5.2.1 核心函數分類(Kernel Function Classification) 5.2.2 對比補償(Contrast Compensation) 5.2.3 最佳平均值迴歸分析(Regression Analysis of Optimal Average) 5.2.4 對稱校正(Symmetrical Correction) 5.2.5 整合(Integration) 5.4 實驗結果 第六章 結論與未來展望 參考文獻 作者簡介

[1] B. E. Bayer, “Color Imaging Array,” U.S. Patent 3 971 065, 1976.
[2] K. Jensen and D. Anastassiou, “Subpixel edge localization and the interpolation of still images, ” IEEE Trans. On Image Processing, Vol. 4, pp. 285-295, Mar. 1995
[3] M. Sonka, V. Hlavac, and R. Boyle, Image Porcessing, Analysis, and Machine Vision, PWS Pubishing, pp. 67-68, 1999.
[4] T. Sakamoto, C. Nakanishi, and T. Hase, “Software pixel interpolation for digital still camera suitable for a 32-bit MCU,” IEEE Trans. Consum. Electron., vol. 44, no. 4, pp. 1342–1352, Nov. 1998.
[5] J. S. J. Li and S. Randhawa, “Color filter array demosaicking using high-order interpolation techniques with a weighted median filter for sharp color edge preservation,” IEEE Transactions on Image Processing. vol. 18, no. 9, pp. 1946–1957, Sep. 2009.
[6] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schaffer, and R. M. Mersereau, “Demosaicking: Color filter array interpolation,” IEEE Signal Processing Mag., vol. 22, no. 1, pp. 44–54, Jan. 2005.
[7] J. S. J. Li and S. Randhawa, “High order extrapolation using Taylor series for color filter array demosaicing,” in Springer Lecture Notes in Computer Science. New York: Springer, 2005, pp. 703–711, Series LNCS 3656.
[8] J. F. Hamilton and J. E. Adams, “Adaptive Color Plane Interpolation in Single Sensor Color Electronic Camera,” U.S. Patent 5 629 734, 1997.
[9] K.-H. Chung and Y.-H. Chan, “Color demosaicing using variance of color differences,” IEEE Transactions on Image Processing, vol. 15, no. 10, pp. 2944-2955, Oct. 2006.
[10] D. R. Cok, “Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image signal,” U.S. Patent 4 642 678, Feb. 10, 1986.
[11] S.-C. Pei and I.-K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 6, pp. 503–513, June 2003
[12] Y.J. Lee and J. Yoon, “Nonlinear Image Upsampling Method Based on Radial Basis Function Interpolation,” IEEE Transactions on Image Processing, vol. 19, no. 10, pp. 2682–2692, Oct. 2010.
[13] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed., Reading, MA: Addison-Wesley, 1992.
[14] Y. T. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,” IEEE Trans. Consumer Electronics, vol. 43, no. 1, pp. 1-8, 1997.
[15] Y. Wang, Q. Chen, and B. Zhang, “Image enhancement based on equal area dualistic sub-image histogram equalization method,” IEEE Trans. Consumer Electronics, vol. 45, no. 1, pp. 68-75, 1999.
[16] S. D. Chen and A. R. Ramli, “Minimum mean brightness error bi-histogram equalization in contrast enhancement,” IEEE Trans. Consumer Electronics, vol. 49, no. 4, pp. 1310-1319, 2003.
[17] S. D. Chen and A. R. Ramli, “Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation,” IEEE Trans. Consumer Electronics, vol. 49, no. 4, 1301-1309, 2003.
[18] K. S. Sim, C. P. Tso, and Y. Y. Tan, “Recursive sub-image histogram equalization applied to grayscale images,” Pattern Recognition Letters, vol. 28, no. 10, pp. 1209-1221, 2007.
[19] D. Menotti, L. Najman, J. Facon, and A. D. A. Araújo, “Multi-histogram equalization methods for contrast enhancement and brightness preserving,” IEEE Trans. Consumer Electronics, vol. 53, no. 3, pp. 1186-1194, 2007.
[20] J. Y. Kim, L. S. Kim, and S. H. Hwang, “An advanced contrast enhancement using partially overlapped sub-block histogram equalization,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 475-484, 2001.
[21] F. Lamberti, B. Montrucchio, and A. Sanna, “CMBFHE: A novel contrast enhancement technique based on cascaded multistep binomial filtering histogram equalization,” IEEE Trans. Consumer Electronics, vol. 52, no. 3, pp. 966-974, 2006.
[22] J. A. Stark, “Adaptive image contrast enhancement using generalizations of histogram equalization,” IEEE Trans. Image Processing, vol. 9, no. 5, pp. 889-896, 2000.
[23] Widrow B. and Hoff M. E. Jr., “Adaptive Switch Circuits,” IRE Western Electric Show and Convention Recode, part 4, pp. 96–104, 1960.
[24] Kodak Image Database: http://r0k.us/graphics/kodak/
[25] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, NY: Dover, 1964.
[26] P. Viola and M. J. Jones, "Robust real-time object detection," Second International Workshop on Statistical and Computational Theories of Vision, July 2001.
[27] Image Database: http://msp.ee.ntust.edu.tw/public%20file/BSLai/NaturalSet.rar
[28] M. Kutner, C. Nachtsheim, and J. Neter, Applied Linear Regression Models, 4th ed., NY: McGraw-Hill, 2004.
[29] J. M. Guo and C. H. Chang, “Prediction-Based Watermarking Schemes Using Ahead/Post AC Prediction,” Signal Processing, vol. 90, no. 8, pp. 2552-2566, August, 2010.
[30] E. Kreyszig, Advanced Engineering Mathematics. New York: Wiley, 1999.
[31] K. L. Chung, W. J. Yang, W. M. Yan, and C. C. Wang, “Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneity-projection,” IEEE Transactions on Image Processing, vol. 17, no. 12, pp. 2356–2367, 2008.
[32] L. Zhang and X. Wu, “Color demosaicking via directional linear minimum mean square-error estimation,” IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2167–2178, 2005.
[33] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE Transactions on Image Processing, vol. 11, no. 9, pp. 997–1013, 2002.
[34] K. Hirakawa and T.W. Parks, “Adaptive homogeneity directed demosaicing algorithm,” IEEE Transactions on Image Processing, vol. 14, no. 3, pp. 360–369, 2005.
[35] Y. M. Lu, M. Karzand, and M. Vetterli, “Demosaicing by Alternating Projections: Theory and Fast One-Step Implementation,” IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2085–2098, 2010.
[36] A. Giannoula, “Classification-Based Adaptive Filtering for Multiframe Blind Image Restoration,” IEEE Transactions on Image Processing, vol. 20, no. 2, pp. 382–390, 2011.
[37] M. Parmar, and S. J. Reeves, “Selection of Optimal Spectral Sensitivity Functions for Color Filter Arrays,” IEEE Transactions on Image Processing, vol. 19, no. 12, pp. 3190–3203, 2010.
[38] P. Hao, Y. Li, Z. Lin, and E. Dubols, “A Geometric Method for Optimal Design of Color Filter Arrays,” IEEE Transactions on Image Processing, vol. 20, no. 3, pp. 709–722, 2011.
[39] C. Y. Su, “Highly effective iterative demosaicing using weighted-edge and color-difference interpolations,” IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 639-645, May 2006.
[40] Magnus R. Hestenes, and Eduard Stiefel, “Methods of Conjugate Gradients for Solving Linear Systems,” Journal of Research of the National Bureau of Standards, vol. 49, no. 6, pp. 409–432, 1952.
[41] Z. Yu and C. Bajaj, “A fast and adaptive method for image contrast enhancement,” in Proc. IEEE International Conference on Image Processing, vol. 5, pp. 1001-1004, 2004.
[42] R. Deriche, “Fast algorithms for low-level vision,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 78-87, 1990.
[43] J. M. Guo, C. C. Su, “Improved Block Truncation Coding Using Extreme Mean Value Scaling and Block-Based High Speed Direct Binary Search,” IEEE Signal Processing Letters, vol. 18, no. 11, pp. 694-697, October 2011.
[44] J. M. Guo, C. C. Lin, M. F. Wu, C. H. Chang, and Hua Lee, “Complexity Reduced Face Detection Using Probability-Based Face Mask Prefiltering and Pixel-Based Hierarchical-Feature Adaboosting,” IEEE Signal Processing Letters, vol. 18, no. 8, pp. 447-450, 2011.
[45] Y. F. Liu and J. M. Guo, and J. D. Lee, “Halftone Image Classification using LMS Algorithm and Naive Bayes,” IEEE Trans. Image Processing, vol. 20, no. 10, pp. 2837-2847, 2011.

QR CODE