簡易檢索 / 詳目顯示

研究生: 陳則綱
Ze-Gang Chen
論文名稱: 多階式流體化床於化學迴路程序之系統功率與操作變數分析
System Power and Operating Variables Analysis for Chemical Looping Process via Multi-stage Fluidized Bed
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 曾堯宣
Yao-Hsuan Tseng
吳煒
Wei Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 114
中文關鍵詞: 化學迴路燃燒程序化學迴路氣化程序多階式流體化床Aspen Plus
外文關鍵詞: Chemical looping combustion, Chemical looping gasification, Multi-stage Fluidized bed, Aspen Plus
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以戴 (2019)的冷態模型系統與實驗結果,進行多階式流體化床於化學迴路程序的系統功率估算與操作條件分析。根據戴 (2019)的估算,此多階式流體化床在燃燒程序中,系統功率可達100 kWth。此估算結果採用燃料反應器之進氣量換算成甲烷,並依據標準燃燒熱進行計算。為了確認系統的可操作功率,並同時考慮化學反應對系統流場之變化,本研究使用Aspen Plus軟體進行多階式流體化床的燃燒程序與氣化程序之系統功率估算,並同時針對燃燒程序進行單階與多階流體化床之系統功率比較。其中燃燒程序的目標為燃料完全轉化成CO2與H2O,而氣化程序的目標為將燃料轉化成合成氣。
由於調動系統的氣固輸送比例,可能將影響反應器的流場,因此本研究以戴 (2019)實驗結果中兩反應器之進氣流率作為系統進料條件。結果顯示,在該條件下,多階系統必須降低燃料進料量使系統功率降低至10.7 kWth,才可維持系統內流場與載氧體完全氧化回Fe2O3的製程需求。由於系統功率遠低於100 kWth,因此在不影響系統內流場與載氧體循環量下,應調整空氣反應器之直徑增加空氣流率。研究顯示,空氣反應器之空氣流率增加至2648 L/min時,系統功率可達101.3 kWth。在氣化程序中,在固定載氧體循環量的條件下將惰性載體配比提高至90 wt%,所需空氣反應器之空氣流率為867 L/min,在相同功率下,合成氣純度可達73 %。
在燃燒程序中,單階與多階流體化床之系統功率的結果顯示,單階系統在燃料完全轉化的條件下,載氧體僅能轉化至Fe3O4相態,而多階系統能轉化至FeO相態。在相同操作條件下,單階系統的功率僅有45.8 kWth,而此多階系統則最大可達101.3 kWth。


In this study, system power and operation condition are based on the cold model experiment results for chemical looping process via multi-stage fluidized. In previous study, Dai (2019) estimated the system power could reach 100 kWth by assuming CH4 as the same air mole flow rate to the fuel reactor and using standard combustion heat of CH4 as calculation basis. To verify the system power estimated from Dai (2019), this study used Aspen Plus software to simulate the system. This study compares the system power in the chemical looping combustion and gasification processes via multi-stage fluidized bed. Moreover, this study also compares the system power of chemical looping combustion process via multi-stage fluidized bed and single-stage fluidized bed. The products of combustion process are 100% CO2 and H2O, and the products of gasification process are syngas.
Because changing the gas feed flow rate in the fuel reactor and the air reactor would change the flow field in those two reactors, this study used the gas feed flow rate based on Dai’s (2019) work. As the result, the system power must be decrease to 10.7 kWth to guarantee that the oxygen carrier will be totally oxidized to Fe2O3 in the air reactor. Therefore, the air flow rate have to be increased to meet the system power as 100 kWth. The only way we have to do is enlarge the diameter of the air reactor to maintain the flow field and oxygen carrier circulation rate. When the air flow rate in the air reactor increased to 2648 L/min, the system power could be 101.3 kWth. In the gasification process, the air flow rate only increase to 867 L/min in the air reactor. In that condition, the syngas purity is 73 % under the same system power.
In combustion process via single-stage fluidized bed, the system power is only 45.8 kWth due to the oxygen carrier only oxidized to Fe3O4 phase. In the same operation condition for multi-stage fluidized bed, the system power could be up to 101.3 kWth.

第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究目的與動機 30 1.4 組織架構 31 第二章 單元模型之建置方法 32 2.1 前言 32 2.2 整廠模型建立 32 2.3 燃料反應器 36 2.4 空氣反應器 42 2.5 循環料封 43 2.6 旋風分離器 43 2.7 裂解反應器 47 第三章 多階式循環流體化床於不同程序之系統功率分析 48 3.1 前言 48 3.2 研究方法 49 3.3 冷態模型實驗結果與載氧體循環量 53 3.4 化學迴路程序相關公式之定義 58 3.5 模型驗證 61 3.6 燃燒程序 63 3.7 氣化程序 77 第四章 燃燒程序於不同階數反應器之系統功率分析 83 4.1 前言 83 4.2 未增加空氣流率之單階與多階系統功率比較 83 4.3 增加空氣流率之單階與多階系統功率比較 89 4.4 不同階數的燃料反應器之系統功率分析 91 第五章 結論與未來展望 96 結論 96 未來展望 97 參考文獻 98

[中文]
忻辰,熱損失與固體循環量於化學迴路製成之模擬與分析,碩士論文,國立台灣科技大學化學工程所,2018年
吳翊康,化學鍊燃燒技術應用於處理高含水量溶劑之研究,碩士論文,國立台灣科技大學化學工程所,2018年
曾子維,交聯式流體化床之循環穩定性評估與計算流體力學模擬應用於化學迴路燃燒程序之研究,碩士論文,國立台灣科技大學機械工程所,2016年
陳君霖,應用不同燃料於化學迴路產氫製程之模擬與操作變數分析研究,碩士論文,國立台灣科技大學化學工程所,2017年
彭鏡禹,化學迴路技術發展概況與展望,中興工程,第124期,111–119,2014年
錢建嵩,流體化床技術,高立圖書,1992年
戴楷錦,化學迴路程序基於計算流體力學與冷模實驗之多階循環流體化床設計,碩士論文,國立台灣科技大學化學工程所,2019年

[英文]
Abad, A., Adánez, J., García-Labiano, F., Luis, F., Gayán, P., & Celaya, J., Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science, 62, 533-549, 2007.
Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., & Luis, F., Progress in chemical-looping combustion and reforming technologies. Progress in energy and combustion science, 38, 215-282, 2012.
Aspen Tech, Cyclone Dimensions, Aspen Plus V10 Help, 2017.
Dietz, P. W., Collection efficiency of cyclone separators. American Institute of Chemical Engineers Journal, 27, 888-892, 1981.
Fan, L. S., Chemical looping systems for fossil energy conversions. John Wiley & Sons, 2011.
Fan, L. S., Chemical looping partial oxidation: gasification, reforming, and chemical syntheses. Cambridge University Press, 2017.
Geldart, D., Types of gas fluidization. Powder technology, 7, 285-292, 1973.
He, F., Galinsky, N., & Li, F., Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles–Feasibility assessment and process simulations. International Journal of Hydrogen Energy, 38, 7839-7854, 2013.
Hsieh, T. L., Zhang, Y., Xu, D., Wang, C., Pickarts, M., Chung, & Tong, A., Chemical Looping Gasification for Producing High Purity, H2-Rich Syngas in a Cocurrent Moving Bed Reducer with Coal and Methane Cofeeds. Industrial & Engineering Chemistry Research, 57, 2461-2475, 2018.
Ishida, M., Takeshita, K., Suzuki, K., & Ohba, T., Application of Fe2O3− Al2O3 composite particles as solid looping material of the chemical-loop combustor. Energy & Fuels, 19, 2514-2518, 2005.
Johansson, E., Lyngfelt, A., Mattisson, T., & Johnsson, F., Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion. Powder Technology, 134, 210-217, 2003.
Johansson, E., Mattisson, T., Lyngfelt, A., & Thunman, H., Combustion of syngas and natural gas in a 300 W chemical-looping combustor. Chemical Engineering Research and Design, 84, 819-827, 2006.
Jukkola, G., Liljedahl, G., Nsakala, N. Y., Morin, J. X., & Andrus, H., An Alstom vision of future CFB technology based power plant concepts. In 18th International Conference on Fluidized Bed Combustion, 109-120, 2005.
Kathe, M. V., Empfield, A., Na, J., Blair, E., & Fan, L. S., Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis. Applied energy, 165, 183-201, 2016.
Kuo, P. C., Chen, J. R., Wu, W., & Chang, J. S., Hydrogen production from biomass using iron-based chemical looping technology: validation, optimization, and efficiency. Chemical Engineering Journal, 337, 405-415, 2018.
Kunii, D., & Levenspiel, O., Fluidization engineering. Oregon State University, 1969.
Leith, D., The collection efficiency of cyclone type particle collectors-a new theoretical approach. In Air Pollution and Its Control, American Institute of Chemical Engineers Journal Symposium Series, 68, 196-206, 1972.
Li, F., Zeng, L., Velazquez‐Vargas, L. G., Yoscovits, Z., & Fan, L. S., Syngas chemical looping gasification process: Bench‐scale studies and reactor simulations. American Institute of Chemical Engineers Journal, 56, 2186-2199, 2010.
Li, F., Zeng, L., & Fan, L. S., Biomass direct chemical looping process: process simulation. Fuel, 89, 3773-3784, 2010.
Linderholm, C., Abad, A., Mattisson, T., & Lyngfelt, A., 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier. International Journal of Greenhouse Gas Control, 2, 520-530, 2008.
Lyngfelt, A., Oxygen carriers for chemical looping combustion - 4000 h of operational experience. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 66, 161-172, 2011.
Lyngfelt, A., & Thunman, H., Chemical-looping combustion: design, construction and 100 h of operational experience of a 10 kW prototype. Carbon dioxide capture for storage in deep geologic formations-results from the CO2 capture project, 1, 625-645, 2004
Marinos, C., Economopoulou, A. A., & Economopoulos, A. P., Comparative fractional efficiency predictions by selected cyclone simulation models. Journal of Environmental Engineering, 133, 556-567, 2007.
Mattisson, T., & Lyngfelt, A., Applications of chemical-looping combustion with capture of CO2. Second Nordic Minisymposium on Carbon Dioxide Capture and Storage, 46-51, 2001.
Mattisson, T., Keller, M., Linderholm, C., Moldenhauer, P., Ryden, M., Leion, H., & Lyngfelt, A., Chemical-looping technologies using circulating fluidized bed systems: Status of development. Fuel processing technology, 172, 1-12, 2018.
Mothes, H., Loffler, F., Zur Berechnung Der Partikelabscheidung in Zyklonen. Chemical Engineering and Processing: Process Intensification, 18, 323-331, 1984.
Porrazzo, R., White, G., & Ocone, R., Aspen Plus simulations of fluidised beds for chemical looping combustion. Fuel, 136, 46-56, 2014.
Rosin, P., Rammler, E., & Intelmann, W., Principles and limits of cyclone dust removal. Hundert Jahre Verein Deutscher Ingenieure, 76, 433-437, 1932.
Shen, T., Wu, J., Shen, L., Yan, J., & Jiang, S., Chemical Looping Gasification of Coal in a 5 kWth Interconnected Fluidized Bed with a Two-Stage Fuel Reactor. Energy & fuels, 32, 4291-4299, 2017.
Shen, L., Wu, J., Xiao, J., Song, Q., & Xiao, R., Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier. Energy & Fuels, 23, 2498-2505, 2009.
Shephered, C. B., & Lapple, C. E., Flow pattern and pressure drop in cyclone dust collectors. Industrial & Engineering Chemistry, 31, 972-984, 1939.
Zeng, L., He, F., Li, F., & Fan, L. S., Coal-direct chemical looping gasification for hydrogen production: reactor modeling and process simulation. Energy & Fuels, 26, 3680-3690, 2012.

無法下載圖示 全文公開日期 2024/08/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE