簡易檢索 / 詳目顯示

研究生: 楊翔智
Hsiang-Chih Yang
論文名稱: 二鈣鐵載氧體應用於化學迴路之綠藻氣化與綠藻-PP共氣化
Chemical Looping for Algae Gasification and Algae-PP Co-Gasification with Di-Calcium Ferrite Oxygen Carriers
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
郭俞麟
Yu-Lin Kuo
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 162
中文關鍵詞: 化學迴路氣化共氣化Ca2Fe2O5載氧體綠藻聚丙烯
外文關鍵詞: Chemical looping gasification, Co-gasification, Di-calcium ferrite, Algae, Polypropylene
相關次數: 點閱:158下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學迴路氣化程序相較傳統氣化程序顯示出一些優勢,而共氣化程序能夠產生正向協同效應使得產出高品質合成氣以用於化學產品生成之應用。在本研究中,製備了二鈣鐵載氧體,並於固定床反應器中進行綠藻化學迴路氣化與綠藻-PP化學迴路共氣化之評估。
    混和鐵:鈣莫耳比和1:1的Fe2O3及Ca(OH)2於不同鍛燒溫度及時間以機械混合法製備二鈣鐵(Ca2Fe2O5)載氧體。實驗結果顯示載氧體在1150 ℃下鍛燒6小時展現出優異的合成氣選擇性和循環再生性。藉由XRD晶相分析,越高的鍛燒溫度及時間能獲得越純的Ca2Fe2O5晶相。CaFe-1150-6載氧體在合成氣氣氛進行還原。Ca2Fe2O5可直接被還原成氧化鈣與金屬鐵,不需經過氧化鐵相態。此外CaFe-1150-6載氧體的還原動力學於甲烷氣氛下進行測試,甲烷氣氛下的還原活化能為108.91 kJ/mole。
    綠藻化學迴路氣化中,操作溫度850 ℃、OC/A= 1、S/A= 0.25為氣化實驗的最佳條件。合成氣產量為296.33 mL,H2/CO 莫耳比為1.49,CO/CO2莫耳比為1.37。綠藻-PP化學迴路共氣化中,操作溫度900 ℃、OC/A= 8、S/A= 0.25為共氣化實驗的最佳條件。合成氣產量為537.41 mL,H2/CO莫耳比為2.43,CO/CO2莫耳比為3.34。然而部分甲烷無法於固定床中反應器充分轉化。
    本研究成功製備二鈣鐵載氧體進行化學迴路氣化,研究結果指出鈣鐵系列當作載氧體具有較佳的潛力運用於合成氣的產出。


    Chemical looping gasification (CLG) had better advantage than traditional gasification. Co-gasification can generate the positive synergistic effect and supply high syngas quality for chemical products. In this studies, di-calcium ferrite oxygen carriers (Ca2Fe2O5) were developed and used for algae chemical looping gasification and algae-PP chemical looping co-gasification in a fixed-bed reactor.
    Oxygen carriers (OC) are prepared with 1 of iron/calcium mole ratio. The result showed that OC exhibits good syngas selectivity and redox cyclability at a calcination temperature of 1150 ℃ for 6 hours. From XRD result, higher calcination temperature and time can obtain purer Ca2Fe2O5. CaFe-1150-6 was reduced under syngas atmosphere, Ca2Fe2O5 can directly reduce into Fe and CaO, without passing through any iron oxides. In addition, the reduction kinetics of CaFe-1150-6 was tested in methane atmosphere, the reduction activation energy was 108.91 kJ/mole.
    In algae gasification, 850 ℃ of operating temperature, OC/A= 1 and S/A= 0.25 were optimal conditions. The syngas yield was 296.33 mL with H2/CO= 1.49 and CO/CO2= 1.37. In algae-PP co-gasification, 900 ℃ of operating temperature, OC/A= 8 and S/A= 0.25 were optimal conditions. The syngas yield was 537.41mL with H2/CO= 2.43 and CO/CO2= 3.34. However, CH4 cannot be effectively converted in a fixed-bed reactor.
    The di-calcium ferrite OC are successful prepared for chemical looping gasification. The results showed that calcium ferrite OC demonstrate potential applications on syngas production.

    中文摘要 I Abstract II Acknowledgement III Table of Contents IV List of Figures VII List of Tables XI List of Symbols XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective and Scope 3 Chapter 2 Literature and Review 4 2.1 Introduction of Chemical Looping Processes 4 2.1.1 Chemical Looping Gasification 4 2.1.2 Biomass as Fuel in Chemical Looping Gasification 8 2.1.3 Plastics as Fuel in Chemical Looping Process 11 2.1.4 NOx Formation in Chemical Looping Process 14 2.2 Mechanism of Solid Fuel Pyrolysis and Gasification 18 2.2.1 Pyrolysis of Algae 18 2.2.2 Gasification of Algae 20 2.2.3 Co-Pyrolysis and Co-Gasification of Algae and Plastics 21 2.3 Preparation and Performance of Calcium Ferrite Oxygen Carriers 24 2.3.1 Development of the Calcium Ferrite Oxygen Carriers 26 2.3.2 Effect of Calcination Condition on Oxygen Carriers 31 2.3.3 Reduction Kinetic Models of Oxygen Carriers 35 2.4 Optimal Operating Parameters for Chemical Looping Gasification 40 2.4.1 Effect of Operating Temperature 40 2.4.2 Effect of Oxygen Carriers to Solid Fuel Ratio 41 2.4.3 Effect of Gasification Agent Flow Rate 43 2.4.4 High Quality Syngas Production from Chemical Looping Gasification 45 Chapter 3 Materials and Experiments 47 3.1 Materials 47 3.2 Apparatus and Instruments 47 3.3 Experimental Procedures 48 3.3.1 Experiment Framework 48 3.3.2 Preparation and Characterization of Oxygen Carriers 49 3.3.3 Performance of Oxygen Carriers 52 3.3.4 Performance of Chemical Looping Process 56 3.3.5 Method of Analysis Fuel 60 Chapter 4 Results and Discussion 62 4.1 Performance of Oxygen Carriers 62 4.1.1 Reactivity of Oxygen Carriers 62 4.1.2 Redox Cyclability Test of Oxygen Carriers 65 4.1.3 Characterization of Oxygen Carriers 68 4.1.4 Reduction Mechanism of Oxygen Carriers 74 4.1.5 Kinetic Models for Reduction of Oxygen Carriers 75 4.2 Chemical Looping Gasification of Algae 82 4.2.1 Thermal Gravimetric Characterization of Algae with Oxygen Carriers 84 4.2.2 Effect of Operating Temperature on Chemical Looping Gasification 86 4.2.3 Effect of Oxygen Carriers Amount on Chemical Looping Gasification 91 4.2.4 Effect of Steam Amount on Chemical Looping Gasification 96 4.2.5 NOx in Chemical Looping Gasification and Traditional Gasification 100 4.3 Chemical Looping Co-Gasification of Algae and PP 101 4.3.1 Synergistic Effects of Algae-PP Co-Pyrolysis in Gas Phase 101 4.3.2 Synergistic Effects of Algae-PP Co-Pyrolysis in Solid Phase 103 4.3.3 Performance of Algae-PP Co-Gasification 107 Chapter 5 Conclusions and Recommendations 112 References 117 Appendix 129

    Abu El-Rub, Z., Bramer, E. A. and Brem, G. “Review of Catalysts for Tar Elimination in Biomass Gasification Processes,” Ind. Eng. Chem. Res., Vol. 43(22), pp. 6911-6919 (2004).
    Alvarez, J., Kumagai, S., Wu, C., Yoshioka, T., Bilbao, J., Olazar, M., and Williams, P. T., “Hydrogen Production from Biomass and Plastic Mixtures by Pyrolysis-Gasification. Int. J. Hydrog. Energy, 39(21), 10883-10891 (2014).
    Azharuddin, M., Tsuda, H., Wu, S., and Sasaoka, E., “Catalytic Decomposition of Biomass Tars with Iron Oxide Catalysts,” Fuel, Vol. 87(4-5), pp. 451-459 (2008).
    Azizi, K., Keshavarz Moraveji, M. and Abedini Najafabadi, H. “Characteristics and Kinetics Study of Simultaneous Pyrolysis of Microalgae Chlorella Vulgaris, Wood and Polypropylene Through TGA,” Bioresour. Technol., Vol. 243, pp. 481–491 (2017).
    Bach, Q.-V., and Chen, W.-H., “Pyrolysis Characteristics and Kinetics of Microalgae via Thermogravimetric Analysis (TGA): A state-of-The-Art Review,” Bioresour. Technol., Vol. 246, pp. 88-100 (2017).
    Barroso Soares, R., Ferreira Martins, M., Franci and Gonçalves, R. “Experimental Investigation of Wastewater Microalgae in a Pilot-Scale Downdraft Gasifier,” Algal Res., Vol. 51, pp. 102049 (2020).
    Bhadeshia, H. K. D. H., “Cementite”. Int. Mater. Rev., Vol. 65(1), pp. 1-27 (2019).
    Burra, K. G., and Gupta, A. K., “Synergistic Effects in Steam Gasification of Combined Biomass and Plastic Waste Mixtures,” Appl. Energy, Vol. 211, pp. 230-236(2018).
    Chen, G., Liu, F., Guo, X., Zhang, Y., Yan, B., Cheng, Z., Ma, W., and Hou, L., “Co-gasification of Acid Hydrolysis Residues and Sewage Sludge in a Downdraft Fixed Gasifier with CaO as an In-Bed Additive,” Energy Fuels, Vol. 32(5), pp. 5893-5900. (2018).
    Chen, J., Shi, X., Wang, S., Li, J., Hu, T., Lin, F. and Liu, M. “Investigation into Fluctuating Anisotropy for Biomass Gasification in Bubbling Fluidized Bed Gasifier,” Appl. Therm. Eng., Vol. 138, pp. 774-782 (2018).
    Chen, W.-H., Wu, Z.-Y., and Chang, J.-S. “Isothermal and Non-Isothermal Torrefaction Characteristics and Kinetics of Microalga Scenedesmus Obliquus CNW-N,” Bioresour. Technol., Vol. 155, pp. 245-251(2014).
    Cheng, Z., Zhang, L., Jin, N., Zhu, Y., Chen, L., Yang, Q., Yan, M., Ma, X., and Wang, X., “Effect of Calcination Temperature on the Performance of Hexaaluminate Supported CeO2 for Chemical Looping Dry Reforming,” Fuel Process. Technol., Vol. 218, pp. 106873 (2021).
    Chiu, P.-C., Ku, Y., Wu, H.-C., Kuo, Y.-L., and Tseng, Y.-H., “Chemical Looping Combustion of Polyurethane and Polypropylene in an Annular Dual-Tube Moving Bed Reactor with Iron-Based Oxygen Carrier,” Fuel, Vol. 135, pp. 146-152 (2014).
    Constantinescu, M., Bucura, F., Ionete, R. E., Niculescu, V. C., Ionete, E. I., Zaharioiu, A., Oancea, S., and Miricioiu, M. G., “Comparative Study on Plastic Materials as a New Source of Energy,” Mater. Plast., Vol. 56, pp. 41-46 (2019).
    Cuadrat, A., Abad, A., Garcia, F., Gayan, P., Diego, L. F., and Adanez, J., “Relevance of the Coal Rank on the Performance of the In-Situ Gasification Chemical-Looping Combustion,” J. Chem. Eng., Vol. 195, pp. 91-102 (2012).
    Debiagi, P. E. A., Trinchera, M., Frassoldati, A., Faravelli, T., Vinu, R., and Ranzi, E. “Algae Characterization and Multistep Pyrolysis Mechanism,” JJ. Anal. Appl. Pyrolysis, Vol. 128, pp. 423-436 (2017).
    Demirbas, A., and Arin, G., “An Overview of Biomass Pyrolysis,” Energy Sources, Vol. 24(5), pp. 471-482 (2002).
    Díaz-Rey, M. R., Cortés-Reyes, M., Herrera, C., Larrubia, M. A., Amadeo, N., Laborde, M., and Alemany, L. J., “Hydrogen-Rich Gas Production from Algae-Biomass by Low Temperature Catalytic Gasification,” Catal. Today, Vol. 257, pp. 177-184 (2015).
    Ding, C., Lv, X., Xuan, S., and Tang, K., Bai, C., “Isothermal Reduction Kinetics of Powdered Hematite and Calcium Ferrite with CO-N2 Gas Mixtures,” ISIJ Int., Vol. 56, pp. 2118-2125 (2016).
    Dong, N., Huo, R., Liu, M., Deng, L., Deng, Z., Chang, G., Huang, Z., and Huang, H. “Chemical Looping Gasification of Sewage Sludge Using Copper Slag Modified by NiO as an Oxygen Carrier,” Chin. J. Chem. Eng. Vol. 29, pp. 335-343 (2020).
    Duman, G., Uddin, M. A., and Yanik, J., “Hydrogen Production from Algal Biomass via Steam Gasification,” Bioresour. Technol., Vol. 166, pp. 24-30(2014).
    Fang, S., Deng, Z., Lin, Y., Huang, Z., Ding, L., Deng, L., and Huang, H., “Nitrogen Migration in Sewage Sludge Chemical Looping Gasification Using Copper Slag Modified by NiO as an Oxygen Carrier,” Energy, Vol. 228, pp. 120448 (2021).
    Ge, H., Guo, W., Shen, L., Song, T., and Xiao, J., “Experimental Investigation on Biomass Gasification Using Chemical Looping in a Batch Reactor and a Continuous Dual Reactor,” Chem. Eng. Sci., Vol. 286, pp. 689-700 (2016).
    Geyer, R., Jambeck, J. R., and Law, K. L., “Production, Use, and Fate of All Plastics Ever Made,” Sci. Adv., Vol. 3(7), pp. 1700782 (2017).
    Gil, J., Aznar, M. P., Caballero, M. A., Francés, E. and Corella, J., “Biomass Gasification in Fluidized Bed at Pilot Scale with Steam-Oxygen Mixtures. Product Distribution for Very Different Operating Conditions,” Energy Fuels, Vol. 11(6), pp. 1109-1118 (1997).
    Gong, X., Zhang, B., Zhang, Y., Huang, Y., and Xu, M., “Investigation on Pyrolysis of Low Lipid Microalgae Chlorella vulgaris and Dunaliella salina,” Energy Fuels, Vol. 28(1), pp. 95-103 (2013).
    Hancock, J. D., and Sharp, J. H., “Method of Comparing Solid-State Kinetic Data and Its Application to the Decomposition of Kaolinite, Brucite, and BaCO3,” J. Am. Ceram. Soc., Vol. 55(2), pp. 74-77 (1972).
    Hansen, B., Kusch, P., Schulze, M., and Kamm, B., “Qualitative and Quantitative Analysis of Lignin Produced from Beech Wood by Different Conditions of the Organosolv Process,” J. Polym. Environ., Vol. 24(2), pp. 85-97 (2016).
    He, F., Huang, Z., Wei, G., Zhao, K., Wang, G., Kong, X., Fenga, Y., Tana, H., Houa, S., Lva, G., Jianga, G. and Guo, Y., “Biomass Chemical-Looping Gasification Coupled with Water/CO2-Splitting Using NiFe2O4 as an Oxygen Carrier,” Energy Convers. Manag., Vol. 201, pp. 112157 (2019).
    He, M., Xiao, B., Hu, Z., Liu, S., Guo, X., and Luo, S., “Syngas Production from Catalytic Gasification of Waste Polyethylene: Influence of Temperature on Gas Yield and Composition,” Int. J. Hydrog. Energy, Vol. 34(3), pp. 1342-1348(2009).
    He, M., Xiao, B., Hu, Z., Liu, S., Guo, X., and Luo, S., “Syngas Production from Catalytic Gasification of Waste Polyethylene: Influence of Temperature on Gas Yield and Composition,” Int. J. Hydrog. Energy, Vol. 34(3), pp. 1342-1348(2009).
    Hernández, S., Amin Farkhondehfal, M., Sastre, F., Makkee, M., Saracco, G., and Russo, N., “Syngas Production from Electrochemical Reduction of CO2: Current Status and Prospective Implementation,” Green Chem., Vol. 19(10), pp. 2326-2346 (2017).
    Hu, J., Zhang, T., Zhang, Q., Yan, X., Zhao, S., Dang, J., and Wang, W., “Application of Calcium Oxide/Ferric Oxide Composite Oxygen Carrier for Corn Straw Chemical Looping Gasification,” Bioresour. Technol., Vol. 330, pp. 125011 (2021).
    Hu, Z., Jiang, E., and Ma, X., “Microwave Pretreatment on Microalgae: Effect on Thermo-Gravimetric Analysis and Kinetic Characteristics in Chemical Looping Gasification,” Energy Convers. Manag., Vol. 160, pp. 375-383 (2018).
    Hu, Z., Jiang, E., and Ma, X., “The Effect of Oxygen Carrier Content and Temperature on Chemical Looping Gasification of Microalgae for Syngas Production,” J. Energy Inst., Vol. 92, pp. 474-487 (2019).
    Huang, Z., Zhang, Y., Fu, J., Yu, L., Chen, M., Liu, S., He, F., Chen, D., Wei, G., Zho, K., Zheng, A., Zhao, Z., and Li, H., “Chemical Looping Gasification of Biomass Char Using Iron Ore as an Oxygen Carrier,” Int. J. Hydrog. Energy, Vol. 41(40), pp. 17871-17883 (2016).
    Huynh, C. V. and Kong, S. C., “Performance Characteristics of a Pilot-Scale Biomass Gasifier Using Oxygen-Enriched Air and Steam,” Fuel, Vol. 103, pp. 987-996 (2013).
    Imtiaz, Q., Hosseini, D. and Müller, C. R., “Review of Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU): Thermodynamics, Material Development, and Synthesis,” Energy Technol., Vol. 1(11), pp. 633-647 (2013).
    Inayat, M., Sulaiman, S. A., Kurnia, J. C., and Shahbaz, M., “Effect of Various Blended Fuels on Syngas Quality and Performance in Catalytic Co-Gasification: A Review,” Renew. Sustain. Energy Rev., Vol. 105, pp. 252-267 (2019).
    Ismail, M., Liu, W., Chan, M. S. C., Dunstan, M. T. and Scott, S. A., “Synthesis, Application, and Carbonation Behavior of Ca2Fe2O5 for Chemical Looping H2 Production,” Energy Fuels, Vol. 30(8), pp. 6220-6232 (2016).
    Ismail, M., Liu, W., Dunstan, M. T. and Scott, S. A., “Development and Performance of Iron Based Oxygen Carriers Containing Calcium Ferrites for Chemical Looping Combustion and Production of Hydrogen,” Int. J. Hydrog. Energy, Vol. 41(7), pp. 4073-4084 (2016).
    Isupova, L. A., Tsybulya, S. V., Kryukova, G. N., Budneva, A. A., Paukshtis, E. A., Litvak, G. S., Ivanov, V. P., Kolomiichuk, V. N. Pavlyukhin, Y. T., and Sadykov, V. A., “Mechanochemical Synthesis and Catalytic Properties of the Calcium Ferrite Ca2Fe2O5,” Kinet. Catal., Vol. 43(1), pp. 122-129 (2002).
    Jamradloedluk, J., and Lertsatitthanakorn, C., “Characterization and Utilization of Char Derived from Fast Pyrolysis of Plastic Wastes,” Procedia Eng., Vol. 69, pp. 1437-1442 (2014).
    Jamradloedluk, J., and Lertsatitthanakorn, C., “Characterization and Utilization of Char Derived from Fast Pyrolysis of Plastic Wastes,” Procedia Eng., Vol. 69, pp. 1437-1442 (2014).
    Jin, Q., Wang, X., Li, S., Mikulčić, H., Bešenić, T., Deng, S., Vujanović, M., Tan, H., and Kumfer, B. M., “Synergistic Effects During Co-Pyrolysis of Biomass and Plastic: Gas, Tar, Soot, Char Products and Thermogravimetric Study,” J. Energy Inst., Vol. 927, pp. 108-117 (2019).
    Jing, D., Snijkers, F., Hallberg, P., Leion, H., Mattisson, T. and Lyngfelt, A., “Effect of Production Parameters on the Spray-Dried Calcium Manganite Oxygen Carriers for Chemical-Looping Combustion,” Energy Fuels, Vol. 30(4), pp. 3257-3268 (2016).
    Khawam, A., and Flanagan, D. R. “Solid-State Kinetic Models: Basics and Mathematical Fundamentals,” J. Phys. Chem., Vol. 110(35), pp. 17315-17328 (2006).
    Khelfa, A., Sharypov, V., Finqueneisel, G., and Weber, J. V., “Catalytic Pyrolysis and Gasification of Miscanthus Giganteus: Haematite (Fe2O3) a Versatile Catalyst,” J. Anal. Appl. Pyrolysis, Vol. 84(1), pp. 84-88 (2009).
    Ku, Y., Lin, P.H., Wu, H.C., Liu, Y.C., Tseng, Y.H. and Lee, H.Y., “Preparation of Fe2O3/Al2O3 and Fe2O3/TiO2 Pellets as Oxygen Carrier for Chemical Looping Process,” Aerosol Air Qual. Res. Vol. 17 pp. 2300-2309 (2017).
    Li, F., Kim, H. R., Sridhar, D., Wang, F., Zeng, L., Chen, J., and Fan, L.-S., “Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance,” Energy Fuels, Vol. 23(8), pp. 4182-4189 (2009).
    Li, F., Sun, Z., Luo, S. and Fan, L. S. “Ionic Diffusion in the Oxidation of Iron-Effect of Support and Its Implications to Chemical Looping Applications,” Energy Environ. Sci., Vol. 4(3), pp. 876 (2011).
    Li, Z., Xu, H., Yang, W., Xu, M., and Zhao, F., “Numerical Investigation and Thermodynamic Analysis of Syngas Production Through Chemical Looping Gasification using Biomass as Fuel,” Fuel, Vol. 246, pp. 466-475 (2019)
    Lin, Y., Wang, H., Wang, Y., Huo, R., Huang, Z., Liu, M., Wei, G., Zhao, Z., Li, H., and Fang, Y., “Review of Biomass Chemical Looping Gasification in China,” Energy Fuels, Vol. 34(7), pp. 7847-7862 (2020).
    Liu, G., Liao, Y., Wu, Y. and Ma, X., “Application of Calcium Ferrites as Oxygen Carriers for Microalgae Chemical Looping Gasification,” Energy Convers. Manag., Vol. 160, pp. 262-272 (2018).
    Liu, Q., Hu, C., Peng, B., Liu, C., Li, Z., Wu, K., Zhang H., Xiao, R., “High H2/CO Ratio Syngas Production from Chemical Looping Co-Gasification of Biomass and Polyethylene with CaO/Fe2O3 Oxygen Carrier,” Energy Convers. Manag., Vol. 199, pp. 111951 (2019)
    Lv, P., Xiong, Z., Chang, J., Wu, C., Chen, Y. and Zhu, J., “An Experimental Study on Biomass Air-Steam Gasification in a Fluidized Bed,” Bioresour. Technol., Vol. 95(1), pp. 95-101 (2004).
    Maleki, H., Haselpour, M., and Fathi, R., “The Effect of Calcination Conditions on Structural and Magnetic Behavior of Bismuth Ferrite Synthesized by Co-Precipitation Method,” J. Mater. Sci. Mater. Electron., Vol. 29(5), pp. 4320-4326 (2017).
    Malysheva, T. Y., Mansurova, N. R., “Use of Phase Diagrams for the Prediction of the Ferrite-and Silicate-Binder Compositions of Fluxed Sinters,” Russ. Metall., Vol. 2008(2), pp. 93-98 (2008).
    Mastellone, M. L., Zaccariello, L., and Arena, U., “Co-Gasification of Coal, Plastic Waste and Wood in a Bubbling Fluidized Bed Reactor,” Fuel, Vol. 89(10), pp. 2991-3000 (2010).
    Mayrhuber, S., Normann, F., Yilmaz, D., and Leion, H., “Effect of the Oxygen Carrier Ilmenite on NOX Formation in Chemical-Looping Combustion.” Fuel Process. Technol., Vol. 222, pp.106962 (2021).
    Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., and Nizami, A. S., “Catalytic Pyrolysis of Plastic Waste: A Review,” Process Saf. Environ., Vol. 102, pp. 822-838 (2016).
    Miller, D. D., Riley, J. and Siriwardane, R. V., “Interaction of Methane with Calcium Ferrite in the Chemical Looping Partial Oxidation Application: Experimental and DFT Study,” Energy Fuels, Vol. 34(2), pp. 2193-2204 (2019).
    Miskolczi, N., Bartha, L., Deák, G., and Jóver, B., “Thermal Degradation of Municipal Plastic Waste for Production of Fuel-Like Hydrocarbons,” Polym. Degrad. Stab., Vol. 86(2), pp. 357–366(2004).
    Miskolczi, N., Bartha, L., Deák, G., and Jóver, B., “Thermal Degradation of Municipal Plastic Waste for Production of Fuel-Like Hydrocarbons,” Polym. Degrad. Stab., Vol. 86(2), pp. 357-366(2004).
    Moghtaderi, B. “Review of the Recent Chemical Looping Process Developments for Novel Energy and Fuel Applications,” Energy Fuels, Vol. 26(1), pp. 15-40 (2011).
    Moon, J., Lee, J., Lee, U., and Hwang, J., “Transient Behavior of Devolatilization and Char Reaction During Steam Gasification of Biomass,” Bioresour. Technol. Vol. 133, pp. 429-436 (2013).
    Nguyen, H. N. T., Berguerand, N., Schwebel, G. L., and Thunman, H., “Importance of Decomposition Reactions for Catalytic Conversion of Tar and Light Hydrocarbons: An Application with an Ilmenite Catalyst,” Ind. Eng. Chem. Res., Vol. 55(46), pp. 11900-11909 (2016).
    Nguyen, H. N. T., Berguerand, N., Schwebel, G. L., and Thunman, H., “Importance of Decomposition Reactions for Catalytic Conversion of Tar and Light Hydrocarbons: An Application with an Ilmenite Catalyst,” Ind. Eng. Chem. Res., Vol. 55(46), pp. 11900-11909 (2016).
    Pinto, F., Franco, C., André, R. N., Miranda, M., Gulyurtlu, I., and Cabrita, I., “Co-Gasification Study of Biomass Mixed with Plastic Wastes,” Fuel, Vol. 81(3), pp. 291-297 (2002).
    Radhakumari, M., Prakash, D. J., and Satyavathi, B., “Pyrolysis Characteristics and Kinetics of Algal Biomass Using TGA Analysis Based on ICTAC Recommendations,” Biomass Convers. Biorefin., Vol. 6(2), pp. 189-195 (2015).
    Raheem, A., Dupont, V., Channa, A. Q., Zhao, X., Vuppaladadiyam, A. K., Taufiq-Yap, Y.-H., Zhao, M., Harun, R., “Parametric Characterization of Air Gasification of Chlorella vulgaris Biomass,” Energy Fuels, Vol. 31(3), pp. 2959-2969 (2017).
    Rizzo, A. M., Prussi, M., Bettucci, L., Libelli, I. M., and Chiaramonti, D., “Characterization of Microalga Chlorella as a Fuel and Its Thermogravimetric Behavior,” Appl. Energy, Vol. 102, pp. 24-31(2013).
    Ruoppolo, G., Ammendola, P., Chirone, R., and Miccio, F., “H2-Rich Syngas Production by Fluidized Bed Gasification of Biomass and Plastic Fuel, Waste Manage., Vol. 32(4), pp. 724-732(2012).
    Sajdak, M., and Muzyka, R., “Use of Plastic Waste as a Fuel in the Co-Pyrolysis of Biomass. Part I: The Effect of The Addition of Plastic Waste on the Process and Products,” J. Anal. Appl. Pyrolysis, Vol. 107, pp. 267-275 (2014).
    Samprón, I., de Diego, L. F., García-Labiano, F., Izquierdo, M. T., Abad, A., and Adánez, J., “Biomass Chemical Looping Gasification of Pine Wood Using a Synthetic Fe2O3/Al2O3 Oxygen Carrier in a Continuous Unit,” Bioresour. Technol., Vol. 123908 (2020).
    Sansaniwal, S. K., Pal, K., Rosen, M. A., and Tyagi, S. K., “Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review,” Renew. Sust. Energ. Rev., Vol. 72, pp. 363-384 (2017).
    Shahbaz, M., Al-Ansari, T., Inayat, M., Sulaiman, S. A., Parthasarathy, P., and McKay, G., “A Critical Review on the Influence of Process Parameters in Catalytic Co-Gasification: Current Performance and Challenges for a Future Prospectus,” Renew. Sustain. Energy Rev., Vol. 134, pp. 110382 (2020).
    Szekely, J., Evans, J. W., and Sohn, H. Y., "Gas-Solid Reactions," Academic Press, NY (1976).
    Tran, D. Q., and Rai, C., “A Kinetic Model for Pyrolysis of Douglas Fir Bark,” Fuel, Vol. 57(5), pp. 293-298 (1978).
    Ullah, K., Ahmad, M., Sofia, Sharma, V. K., Lu, P., Harvey, A., Zafar, M., Sultana, S., Anyanwu, C. N., “Algal Biomass as a Global Source of Transport Fuels: Overview and Development Perspectives,” Prog. Nat. Sci.: Mater. Int., Vol. 24(4), pp. 329-339 (2014).
    Vassilev, S. V., and Vassileva, C. G., “Composition, Properties and Challenges of Algae Biomass for Biofuel Application: An Overview,” Fuel, Vol. 181, pp. 1-33 (2016).
    Wang, J. and Zhao, H., “Evaluation of CaO-Decorated Fe2O3/Al2O3 as an Oxygen Carrier for In-Situ Gasification Chemical Looping Combustion of Plastic Wastes,” Fuel, Vol. 165, pp. 235-243 (2016).
    Wang, K., Yu, Q., Qin, Q., Hou, L., and Duan, W., “Thermodynamic Analysis of Syngas Generation from Biomass Using Chemical Looping Gasification Method,” Int. J. Hydrog., Energy, Vol. 41(24), pp. 10346-10353 (2016).
    Wang, Y., Niu, P., Zhao, H., “Chemical Looping Gasification of Coal Using Calcium Ferrites as Oxygen Carrier,” Fuel Process. Technol., Vol. 192, pp. 75-86 (2019).
    Wu, X., Wu, Y., Wu, K., Chen, Y., Hu, H. and Yang, M. “Study on Pyrolytic Kinetics and Behavior: The Co-Pyrolysis of Microalgae and Polypropylene,” Bioresour. Technol., Vol. 192, pp. 522-528 (2015).
    Wu, Y., Liao, Y., Liu, G. and Ma, X. “Syngas Production by Chemical Looping Gasification of Biomass with Steam and CaO Additive,” Int. J. Hydrog. Energy, Vol. 43(42) 19375-19383 (2018).
    Xiao, R., Jin, B., Zhou, H., Zhong, Z., and Zhang, M., “Air Gasification of Polypropylene Plastic Waste in Fluidized Bed Gasifier,” Energy Convers. Manag., Vol. 48(3), pp. 778-786(2007).
    Xiao, R., Jin, B., Zhou, H., Zhong, Z., and Zhang, M., “Air Gasification of Polypropylene Plastic Waste in Fluidized Bed Gasifier,” Energy Convers. Manag., Vol. 48(3), pp. 778-786(2007).
    Yan, B., Li, Z., Jiao, L., Li, J., Chen, G., and Yang, G., “Chemical Looping Gasification of Chlorella: Parametric Optimization, Reaction Mechanisms, and Nitrogen-Containing Pollutants Emission,” Fuel, Vol. 289, pp. 119987 (2021).
    Yan, J., Liu, W., Sun, R., Jiang, S., Wang, S., and Shen, L., “Chemical Looping Catalytic Gasification of Biomass Over Active LaNixFe1-xO3 Perovskites as Functional Oxygen Carriers,” Chin. J. Chem. Eng. Vol. 36, pp. 146-156 (2020).
    Yaqub, Z. T., Oboirien, B. O., Hedberg, M., and Leion, H., “Experimental Evaluation Using Plastic Waste, Paper Waste, and Coal as Fuel in a Chemical Looping Combustion Batch Reactor,” Chem. Eng. Technol., Vol. 44(6), pp. 1075-1083 (2021).
    Zeng, L., Cheng, Z., Fan, J. A., Fan, L.-S. and Gong, J., “Metal Oxide Redox Chemistry for Chemical Looping Processes,” Nat. Rev. Chem., Vol. 2, pp. 349-364 (2018).
    Zhang, G., Zhu, C., Ge, Y., Liu, X., and Xu, G., “Fluidized Bed Combustion in Steam-Rich Atmospheres for High-Nitrogen Fuel: Nitrogen Distribution in Char and Volatile and Their Contributions to NOx,” Fuel, Vol, 186, pp. 204-214 (2016).
    Zhang, J., He, T., Wang, Z., Zhu, M., Zhang, K., Li, B., and Wu, J., “The Search of Proper Oxygen Carriers for Chemical Cooping Partial Oxidation of Carbon,” Appl. Energy, Vol. 190, pp. 1119-1125 (2017).
    Zhang, L., Li, K., Gu, Z., Zhu, X., Wei, Y., Li, L., Tian, M., and Wang, H. “Iron-Rich Copper Ore as a Promising Oxygen Carrier for Chemical Looping Combustion of Methane,” J. Taiwan Inst. Chem. Eng., Vol. 101, pp. 204-213 (2019).
    Zhang, S., Wang, X., Mao, Z., Li, Y., Jin, B., and Xiao, R., "Effect of Calcination Condition on the Performance of Iron Ore in Chemical-Looping Combustion," Fuel Process. Technol., Vol. 203, pp. 106395 (2020).
    Zhao, H., and Wang, J., “Chemical Looping Combustion of Plastic Wastes for in Situ Inhibition of Dioxins,” Combust. Flame, Vol. 191, pp. 9-18. (2018).
    Zhao, H., Mei, D., Ma, J. and Zheng, C., “Comparison of Preparation Methods for Iron-Alumina Oxygen Carrier and Its Reduction Kinetics with Hydrogen in Chemical Looping Combustion,” Asia-Pac. J. Chem. Eng., Vol. 9(4), pp. 610-622 (2014).
    Zheng, Y., Wei, Y., Li, K., Zhu, X., Wang, H., and Wang, Y., "Chemical-Looping Steam Methane Reforming over Macroporous CeO2-ZrO2 Solid Solution: Effect of Calcination Temperature," Int. J. Hydrog. Energy, Vol. 39, pp. 13361-13368 (2014).

    QR CODE