簡易檢索 / 詳目顯示

研究生: 吳進三
Chin-San Wu
論文名稱: 全生物分解型聚酯複合材製備與特性之研究
Preparation and Characterization of the Entirely Biodegradable Polymer Composites
指導教授: 蘇舜恭
Shuenn-kung Su
口試委員: 邱士軒
Shih-Hsuan Chiu
楊銘乾
Ming-Chien Yang
黃國賢
Hong-Chu Chen
陳鴻助
Hong-Chu Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 183
中文關鍵詞: 聚己內酯聚丁二酸己二酸丁二醇酯聚麩胺酸竹子纖維生物可分解
外文關鍵詞: polycaprolactone, poly(butylene succinate adipate), poly(glutamic acid), bamboo fiber, biodegradable
相關次數: 點閱:368下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究方向是以聚己內酯(PCL)及聚丁二酸已二酸丁二醇酯(PBSA)為主要材料,竹子纖維(BF)及聚麩胺酸(PGA)為填充材來製造三種複合材料,分別進行機械性質、熱性質、表面型態、結構分析及生物降解性等特性分別進行檢測,藉此得到具備良好特性之最佳混合比例。本論文共分為三大部分:
第一部份:本研究針對聚己內酯與竹子纖維複合材之機械性質、熱性質及表面型態進行研究。其中接枝馬來酸酐之聚己內酯/竹子纖維複合材具有其較佳之相容性,因此在機械性質上有較顯著之提昇。由於接枝馬來酸酐之聚己內酯上的酸酐基與竹子纖維上的羥基反應而產生支鏈與交聯巨分子結構;並發現竹子纖維在接枝馬來酸酐之聚己內酯基材中的表面型態分析中,有其較佳界面接著性。又在土壤試驗下,發現聚己內酯/竹子纖維複合材之降解性大於接枝馬來酸酐之聚己內酯/竹子纖維複合材,其相差約3-8 wt%左右,差異並不明顯。最後發現聚己內酯/竹子纖維複合材中,在竹子纖維含量為10 wt% 時具有較佳之拉伸強度與加工特性。
第二部份:本研究針對聚丁二酸已二酸丁二醇酯與竹子纖維複合材之結構分析、生物降解性及表面型態進行研究。其中接枝丙烯酸之聚丁二酸已二酸丁二醇酯/竹子纖維複合材,由於接枝丙烯酸之聚丁二酸已二酸丁二醇酯上的羧基與竹子纖維上的羥基反應而產生鍵結作用,其具有較佳之相容性。並發現竹子纖維在接枝丙烯酸之聚丁二酸已二酸丁二醇酯基材中的表面型態分析中,有其較佳界面接著性。在熔融流動試驗中,顯示接枝丙烯酸之聚丁二酸已二酸丁二醇酯/竹子纖維複合材比聚丁二酸已二酸丁二醇酯/竹子纖維複合材扭力低,流動高較易於加工。最後發現在生物Acinetobacter baumannii菌進行生物降解試驗下,發現聚丁二酸已二酸丁二醇酯/竹子纖維複合材表面型態觀測中,可得知在20天後,在薄膜表面上發現有明顯嚴重的龜裂現象,其降解率可達至80 wt%以上。並在降解試驗的物性分析中,發現接枝丙烯酸之聚丁二酸已二酸丁二醇酯/竹子纖維複合材之降解性低於聚丁二酸已二酸丁二醇酯/竹子纖維複合材且具有較低分子量及黏度。
第三部份:生物可降解性聚己內酯/聚麩胺酸複合材經由熔融混煉方式,將聚己內酯及聚麩胺酸製成複合材料。在本研究中所使用之聚麩胺酸是由菌株Bacillus subtilis DYU1所自製培養而成。且在本研究中利用改變不同自製聚麩胺酸比例含量及接枝丙烯酸於聚己內酯上,觀察其聚己內酯/聚麩胺酸複合材料之變化情況。再由上述之不同變數,製成之聚己內酯/聚麩胺酸複合材,再以傳立葉轉換紅外線光譜儀與核磁共振儀分析,測其複合材之結構,並用以熱式插卡掃描儀分析其結晶行為,掃描式電子顯微鏡測量表面型態;最後再以萬能試驗機測其機械性質的變化及生物可分解試驗測得分解速率。由結果發現,接枝丙烯酸之聚己內酯/聚麩胺酸複合材較聚己內酯/聚麩胺酸複合材抗張強度高,流動高較易於加工。且在含水與含浸生物可分解試驗中,發現聚己內酯/聚麩胺酸複合材之含水及降解性大於接枝丙烯酸之聚己內酯/聚麩胺酸複合材,其相差分別約2-6 wt %與2-10 wt %左右,差異並不明顯。


In this study, bamboo fiber (BF) and poly(glutamic acid) (PGA) were blended with polycaprolactone (PCL) or poly(butylene succinate adipate) (PBSA) to measure the mechanical, thermal, morphological, structure, and biodegradability properties,and then the best blending ratio wewe found. The presented work was divided into three parts:
In the first part, the mechanical, thermal, and morphological properties of polycaprolactone (PCL) and bamboo fiber (BF) composites were evaluated. Composites containing maleic anhydride-grafted PCL (PCL-g-MA/BF) exhibited noticeably improved mechanical properties due to better compatibility between the two components. The dispersion of BF in the PCL-g-MA matrix was significantly more homogeneous due to the creation of branched and cross-linked macromolecules via reactions between carboxyl groups in PCL-g-MA and hydroxyl groups in BF. In a soil environment, the PCL/BF composite has a higher value of biodegradation (about 3-8 wt%) than the PCL-g-MA/BF one. Finally, the tensile strength and elongation at break of PCL-g-MA/BF were nearly constant up to 10 wt% BF and exhibited properties conducive to easy processing.
In the second part, the structure, biodegradability, and morphological properties of composite materials composed of poly(butylene succinate adipate) (PBSA) and bamboo fiber (BF) were evaluated. Composites containing acrylic acid-grafted PBSA (PBSA-g-AA/BF) exhibited noticeably enhanced compatibility due to the ester formation between the carboxyl groups of PBSA-g-AA and hydroxyl groups in BF. In addition, the PBSA-g-AA/BF composite was more easily processed due to a lower melt viscosity. Each composite was subjected to biodegradation tests in an Acinetobacter baumannii compost. Morphological observations indicated severe disruption of film structure after 20 days of incubation, and both the PBSA and the PBSA-g-AA/BF composite films were degraded more than 80 wt%. The PBSA-g-AA/BF films were more biodegradable than those made of PBSA and exhibited a lower molecular weight and intrinsic viscosity.
In the last part, Biodegradable polycaprolactone/poly(glutamic acid) (PCL/PGA) were blended by a melt blending method. Additionally, acrylic acid-grafted polycaprolactone (PCL-g-AA) was studied as an alternative to PCL. Bacillus subtilis DYU1 (GenBank nucleotide sequence accession number is EF442670) was chosen for further study. The composites were characterized chemically using Fourier-transform infrared spectrometry (FTIR), nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC), and morphologically using scanning electron microscopy (SEM). Finally, the samples were measured mechanical properties by instron mechanical tester and biodegradation by soil test. Because of poor compatibility between PCL and PGA, the tensile strength of PCL-g-AA/PGA was higher than PCL/PGA, and easy processing for lower viscosity. In the water and soil environment test, the PCL-g-AA/PGA had higher values of water absorption and biodegradation (2-6 wt% and 2-10 wt%) than PCL/PGA

目錄 中文摘要-- I 英文摘要-- IV 誌謝-------- VI 目錄-------- VII 第一章 前言 1 第二章 文獻回顧 10 2.1高分子材料 10 2.2分解性塑膠 11 2.3生物可分解性塑膠 14 2.3.1特性 14 2.3.2種類 17 2.4聚己內酯 27 2.5 聚丁二酸己二酸丁二醇酯 30 2.6填充材 31 2.6.1聚麩胺酸 31 2.6.2竹子纖維 35 2.7相容劑改質 41 2.8 生物分解性測定規範 47 第三章 實驗材料與方法 52 3.1 實驗材料 52 3.2 實驗儀器 54 3.3實驗流程 55 3.3.1第一部份 聚已內酯/竹子纖維(PCL/BF)複合材料之流程 55 3.3.2第二部份 聚丁二酸已二酸丁二醇酯(PBSA)與竹子纖維(BF)複合材料之流程 56 3.3.3第三部份 聚己內酯/聚麩胺酸(PCL/PGA)複合材料之流程 57 3.4樣品製備 58 3.4.1 聚己內酯/竹子纖維共混系列樣品 58 3.4.2 聚丁二酸己二酸丁二醇酯/竹子纖維共混系列樣品 62 3.4.3 聚己內酯接枝丙烯酸/聚麩胺酸共混系列樣品 66 3.5樣品性質檢測 75 3.5.1 固態-NMR成份分析 75 3.5.2 紅外線光譜(FTIR)成份分析 75 3.5.3 拉伸試驗 76 3.5.4 微差掃瞄熱卡計(Differential Scanning Calorimeter,DSC)測試: 77 3.5.5 熱重損失分析儀(Thermogravimetric Analyzer,TGA)測試: 78 3.5.6 電子顯微鏡(SEM)表面型態分析 78 3.5.7 凝膠滲透層析分子量分析(Gel Permeation Chromatography,GPC) 79 3.5.8 吸水率分析 79 3.5.9 生物分解分析(土壤掩埋法(ASTM G21-70) 80 3.5.10 本性黏度測定 81 第四章 結果與討論 84 4.1第一部份 聚已內酯/竹子纖維複合材料之製程與性質探討 84 4.1.1 聚己內酯/竹子纖維複合材的FTIR結構分析 84 4.1.2 聚己內酯/竹子纖維複合材的NMR結構分析 87 4.1.3 聚己內酯/竹子纖維複合材的熔融扭力性質 90 4.1.4 聚己內酯/竹子纖維複合材的熱性質 92 4.1.5 聚己內酯/竹子纖維複合材的表面型態 95 4.1.6 聚己內酯/竹子纖維複合材的機械性質 97 4.1.7 聚己內酯/竹子纖維複合材的吸水率分析 100 4.1.8 埋入土壤中的聚己內酯/竹子纖維複合材的薄膜之分解行為分析 102 4.2第二部份 聚丁二酸已二酸丁二醇酯與竹子纖維複合材之製備、特性與生物可降解率行為分析探討 105 4.2.1 聚丁二酸己二酸丁二醇酯/竹纖維複合材的FTIR性質分析 105 4.2.2 聚丁二酸己二酸丁二醇酯/竹子纖維複合材的固態13C核磁共振儀性質分析 108 4.2.3 聚丁二酸己二酸丁二醇酯/竹子纖維複合材的扭力性質 111 4.2.4 聚丁二酸己二酸丁二醇酯/竹子纖維複合材的吸水率分析 113 4.2.5 聚丁二酸己二酸丁二醇酯/竹子纖維複合材的生物可降解行為分析 115 4.2.6 生物可降解後的聚丁二酸己二酸丁二醇酯/竹子纖維複合材的薄片之分子量與黏度分析 122 4.3第三部份 聚己內酯/聚麩胺酸複合材料之製備與性質探討 126 4.3.1 聚己內酯/聚麩胺酸複合材的FTIR結構分析 126 4.3.2 聚己內酯/聚麩胺酸複合材的NMR性質分析 129 4.3.3 聚己內酯/聚麩胺酸複合材的熔融扭力性質 132 4.3.4 聚己內酯/聚麩胺酸複合材的熱性質 134 4.3.5 聚己內酯/聚麩胺酸複合材表面型態 137 4.3.6 聚己內酯/聚麩胺酸複合材的機械性質 141 4.3.7 聚己內酯/聚麩胺酸複合材的吸水率分析 144 4.3.8 埋入土壤中的聚己內酯/聚麩胺酸複合材的薄膜之分解行為分析 146 第五章 結論 149 參考文獻 152 附錄(著作) 160 作者簡介 161

參考文獻
1.Unmar, G.; Mohee, R. Bioresour Technol 2008, 99, 6738.
2.Liu, L.; Yu, J.; Cheng, L.; Yang, X. Polym Degrad Stab 2009, 94, 90.
3.Wang, K. H.; Wu, T. M.; Shih, Y. F.; Huang, C. M. Polym Eng Sci 2008, 48, 1833.
4.Singh, S.; Mohanty, A. K.; Sugie, T.; Takai, Y.; Hamada, H. Compos A Appl Sci Manuf 2008, 39, 875.
5.Krzesinska, M. J.; Zachariasz, J.; Lachowski, A. I. Bioresour Technol 2009, 100, 1274.
6.Kim, H. S.; Kim, H. J. Polym Degrad Stab 2008, 93, 1544.
7.Takasu, A.; Shibata, Y.; Narukawa, Y.; Hirabayashi, Y. Macromolecules 2007, 40, 151.
8.Ahn, B. D.; Kim, S. H.; Kim, Y. H.; Yang, J. S. J Appl Polym Sci 2002, 82, 2808.
9.Shah, A. A.; Hasan, F.; Hameed, A.; Ahmed, S. Biotechnol Adv 2008, 26, 246.
10.Ha, C. S.; Cho, W. J. Prog Polym Sci 2002, 27, 759.
11.江易原,“利用枯草桿菌突變株Bacillus subtilis NYU70生產聚麩胺酸之研究”,台灣大學農業化學研究所碩士論文,2003。
12.Okubo, K.; Fujii, T.; Yamamoto, Y. Compos Part A Appl Sci Manuf 2004, 35, 377.
13.Kalia, S.; Kaith, B. S.; Kaur, I. Polym Eng Sci 2009, 49, 1253.
14.Bledzki, A. K.; Gassan, J. Prog Polym Sci 1999, 24, 221.
15.Okubo, K.; Fujii, T.; Thostenson, E. T. Compos Part A Appl Sci Manuf 2009, 40, 469.
16.Das, M.; Chakraborty, D. Ind Eng Chem Res 2006, 45, 6489.
17.Liu, H.; Wu, Q.; Han, G.; Yao, F.; Kojima, Y.; Suzuk, S. Compos Part A Appl Sci Manuf 2008, 39, 1891.
18.Mishra, S.; Naik, J. B.; Patil, Y. P. Compos Sci Technol 2000, 60, 1729.
19.Chin, X.; Guo, Q.; Mi, Y. J Appl Polym Sci 1998, 69, 1891.
20.Lee, S. H.; Wang, S. Compos Part A Appl Sci Manuf 2006, 37, 80.
21.Muller, R. J.; Kleeberg, I.; Deckwer, W. D. J Biotechnol 2001, 86, 87.
22.Nariyoshi, K. Reactive and Functional Polymers 2007, 67, 1292.
23.Oyamada, S.; Ma, X.; Wu, T.; Rpbich, M.; Bianchi, C.; Sellke, F.; Laham, R. Journal of American College of Cardioligy 2010, 55, A122.E1140.
24.Alexander, S. Current Opinion in Biotechnology 2005, 16, 607.
25.姜燮堂,分解性塑膠,交銀產業調查與技術季刊,2001,4,137。
26.Hocking, P. J. Rev. Macrohol. Chem. Phys. 1992, C32, 35.
27.Scott, G.; Gilead, D. Degradable Polymers Principles Applications, Chapman Hall, London 1955, 217.
28.Loucks, J. Polym Degrad and Stab 1998, 59, 245.
29.Hepworth, D. G.; Vincent, J. F. V.; Jeronimidis, G.; Bruce, D. M. Composites: Part A 2000, 31, 599.
30.Oksman, K. L.; Berglund, W. L. A. J Appl Polym Sci 2002, 84, 2358.
31.Pothan, L. A.; Oommen, Z.; Thomas, S. Comp Sci Technol 2003, 63, 283.
32.Pothan, L. A.; Thomas, S. Comp Sci Technol 2003, 63, 1231.
33.Hsieh, C. Y.; Tsai, S. P.; Wang, D. M.; Chang, Y. N.; Hsieh, H. J. Biomaterials 2005, 26, 5617.
34.Cao, H.; Kuboyama, N. Bone 2010, 46, 386.
35.Huang, W.; Shi, X.; Ren, L.; Du, C.; Wang, Y. Biomaterials 2010, 31, 4278.
36.Anderson, J. M.; Shive, M. S. Advanced Drug Delivery Reviews 1997, 28, 5.
37.ISOTALO, T.; ALARAKKOLA, E.; TALJA, M.; TAMMELA, T.L.J.; VALIMAA, T.; TORMALA , P. The Journal of Urology 1999, 162, 1764.
38.Athanasiou, K. A.; Niederauer, G. G.; Mauli Agrawal, C. Biomaterials 1996, 17, Pages 93.
39.Huang, Y. Y.; Chung, T. W.; Tzeng, T. W. International Journal of Pharmaceutics 1997, 156, 9.
40.Agrawal, S. K.; DeLong, N.S.; Coburn, J. M.; Tew, G. N.; Bhatia, S. R. Journal of Controlled Release 2006, 112, 64.
41.Schaztker, J.; Tile, M. The Rationale of Operative Fracture Care, Verlag, Berlin 1987.
42.Steinbuchel, A. FEMS Microbiol Rev. 1992, 217.
43.Sorrentino, A.; Gorrasi, G.; Vittoria, V. Trends in Food Science & Technology 2007, 18, 84.
44.Zhang, X.; Gozukara, Y.; Sangwan, P.; Gao, D.; Bateman, S. Polymer Degradation and Stability 2010, 95, 2309.
45.Janhom, S.; Watanesk, R.; Watanesk, S.; Griffiths, P.; Arquero, O. A.; Naksata, W. Dyes and Pigments 2006, 71, 188.
46.Averous, L.; Moro, L.; Dole, P.; Fringant, C. Polymer 2000, 41, 4157.
47.Mochizuki, M.; Mukai, K.; Yamada, K.; Ichise, N.; Murase, S.; Iwaya, Y. Macromolecules 1997, 30 , 7403.
48.Nagata, M.; Goto, H.; Sakai, W.; Tsutsumi, N. Polymer 2000, 41, 4373.
49.Witt, U.; Widdecke, H.; Deckwer, WD. Macromol Chem Phys 1994, 195, 793.
50.何觀輝,Bioindustry(生物產業),2005,16,172。
51.何觀輝,Food Industries (食品工業),2006,38,27。
52.吳進三、李恩慈、鍾鶴華,“提升聚己內酯與木粉相容性之研究”,高苑科技大學化學工程系研究所碩士論文,2003。
53.何觀輝,Chemical Monthly(化工資訊與商情) ,2006,54。
54.何觀輝,Bioindustry(生物產業) ,2005,16。
55.江易原,“利用枯草桿菌突變株Bacillus subtilis NYU70生產聚麩胺酸之研究”,台灣大學農業化學研究所碩士論文,2003。
56.Wong, S.; Shanks, R.; Hodzic, A. Composites Science and Technology 2004, 64, 1321.
57.Corrales, F.; Vilaseca, F.; Llop, M.; Girones, J.; Mendez, J. A.; Mutj, P. Journal of Hazardous Materials 2007, 144, 730.
58.Kim, H. S.; Lee, B. H.; Choi, S. W.; Kim, S.; Kim, H. J. Composites Part A: Applied Science and Manufacturing 2007, 38, 1473.
59.Djomo, H.; Colmenares, R.; Meyer, G. C. European Polymer Journal 1981, 17, 521.
60.Wu, C. S. Polymer Degradation and Stability 2003, 80, 127.
61.Mansour, O. Y.; Nagaty, A. Progress in Polymer Science 1985, 11, 91.
62.Markham, R. L. Advances in Polymer Technology 1990, 10, 231.
63.John, J.; Bhattacharya, M. Polym Int 1999, 48, 1165.
64.Shia, D.; Yanga, J.; Yaoa, Z.; Wanga, Y.; Huanga, H.; Jinga, W.; Yina, J.; Costa, G. Polymer 2001, 42, 5549.
65.Josepha, P. V.; Rabello, M. S.; Mattosoc, L. H. C.; Joseph, K.; Thomas, S. Composites Science and Technology 2002, 62, 1357.
66.Wong, S.; Shanks, R.; Hodzic, A. Composites Science and Technology 2004, 64, 1321.
67.Arbelaiz, A.; Fernandez, B.; Valea, A.; Mondragon, I. Carbohydrate Polymers 2006, 64, 224.
68.Pascente, C.; Marquez, L.; Balsamo, V.; Muller, A. J. Journal of Applied Polymer Science 2008, 109, 4089.
69.Wu C. S. Polymer Degradation and Stability 2009, 94, 1076.
70.Xie, Y.; Hill, C. A. S.; Xiao, Z.; Militz, H.; Mai, C. Composites: Part A 2010, 41, 806.
71.Chattopadhyay, S. K.; Khandal, R. K.; Uppaluri, R.; Ghoshal, A. K. J. Journal of Applied Polymer Science 2010, 117, 1731.
72.Chattopadhyay, S. K.; Khandal, R. K.; Uppaluri, R.; Ghoshal, A. K. J. Journal of Applied Polymer Science 2011, 119, 1619.
73.Park, J. M.; Quang, S. T.;Hwang, B. S.; DeVries, K. L. Composites Science and Technology 2006, 66, 2686.
74.Okubo, K.; Fujii, T.; Yamamoto, Y. Composites: Part A 2004, 35, 377.
75.Yousif, B. F.; Lau, S. T. W.; McWilliam, S. Tribology International 2010, 43, 503.
76.Sreenivasan, V. S.; Ravindran, D.; Manikandan, V.; Narayanasamy, R. Materials & Design, In Press, Corrected Proof 2010, Available online.
77.Okubo, K.; Fujii, T.; Yamamoto, Y. Composites Part A 2004, 35, 377.
78.Weibing, X.; Guodong, L.; Hongbo, Z.; Shupei, T.; Guopei, H.; Ping, P. W. European Polymer Journal 2003, 39, 1467.
79.Song, P.; Shen, Y.; Du, B.; Peng, M.; Shen, L.; Fang, Z. ACS Appl Mater Interfaces 2009, 1, 452.
80.Bergbreiter, D. E.; Walchuk, B.; Holtzman, B.; Gray H. N. Macromolecules 1998, 31, 3417.
81.ASTM D5210-92; D5271-93; D5511-94; D5522-94a; D5526-94; D5951-96; D5998-96; D6002-96; D6003-96; D5338-98e1; D6340-98; D6691-01; D6692-01, 2000.
82.ISODIS14851; ISODIS14852; ISODIS14855, 1999.
83.Wu, Q.; Yoshino, T.; Sakabe, H.; Zhang, H.; Isobe, S. Polymer 2003, 44, 3909.
84.Sclavons, M.; Laurent, M.; Devaux, J.; Carlier, V. Polymer 2005, 46, 8062.
85.Qiu, W.; Endo, T.; Hirotsu, T. Eur Polym J 2005, 41, 1979.
86.Wu, C. S. Polym Degrad Stab 2009, 94, 1076.
87.Wang, J.; Cheung, M. K.; Mi, Y. Polymer 2002, 43, 1357.
88.Shih Y. F. Bioresour Technol 2007, 98, 819.
89.Aburto, J.; Thiebaud, S.; Alric, I.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. Carbohydr Polym 1997, 34, 101.
90.Sagar, A. D.; Merrill, E. W. J Appl Polym Sci 1995, 58, 1647.
91.Mi, Y.; Chen, X; Guo, Q. J Appl Polym Sci 1997, 64, 1267.
92.Kijchavengkul, T.; Auras, R.; Rubino, M. Polymer Testing 2008, 27, 55.
93.Wu, C. S. Macromol Biosci 2005, 5, 352.
94.Zhao, H. P.; Zhu, J. T.; Fu, Z. Y.; Feng, X. Q.; Shao, Y.; Ma, R. T. Thin Solid Films 2009, 516, 5659.
95.Bessadok, A.; Roudesli, S.; Marais, S.; Follain, N.; Lebrun, L. Compos Part A Appl Sci Manuf 2009, 40, 184.
96.Ahn, B. D.; Kim, S. H.; Kim, Y. H.; Yang, J. S. J Appl Polym Sci 2002, 82, 2808.
97.Wu, C. S. J Controlled Release 2006, 132, 42.
98.Kunanopparat, T.; Menut, P.; Morel, M. H.; Guilbert, S. Compos Part A Appl Sci Manuf 2008, 39, 777.
99.Lei, Y.; Wu, Q.; Yao, F.; Xu, Y. Compos Part A Appl Sci Manuf 2007, 38, 1664.
100.Uchida, H.; Kambe, N. T.; Akutsu, S. Y.; Nomura, N.; Tokiwa, Y.; Nakahara, T. FEMS Microbiol Lett 2000, 189, 25.
101.He, Y.; Asakawa, N.; Masuda, T.; Cao, A.; Yoshie, N.; Inoue, Y. Eur Polym J 2000, 36, 2221.
102.Ishii, N.; Inoue, Y.; Tagaya, T.; Mitomo, H.; Nagai, D.; Kasuya, K. I. Polym Degrad Stab 2008, 93, 883.
103.Ando, Y.; Yoshikawa, K.; Yoshikawa, T.; Nishioka, M.; Ishioka, R.; Yakabe, Y. Polym Degrad Stab 1998, 61, 1297.
104.Zhao, J. H.; Wang, X. Q.; Zeng, J.; Yang, G.; Shi, F. H.; Yan, Q. Polym Degrad Stab 2005, 90, 173.
105.Seretoudi, G.; Bikiaris, D.; Panayiotou, C. Polymer 2002, 43, 5405.
106.Wang, J.; Cheung, M. K.; Mi, Y. Polymer 2002, 43, 1357.
107.Huang, M. H.; Li, S.; Vert, M. Polymer 2004, 45, 8675.
108.Garkhal, K.; Verma, S.; Jonnalagadda, S.; Kumar, N. J Polym Sci A Polym Chem 2007, 45, 2755.
109.Wu, C. S.; Lai, S. M.; Liao, H. T. J Appl Polym Sci Symp 2002, 85, 2905.
110.Wu, C. S. Macromol Biosci 2005, 5, 352.
111.Shen, J. Y.; Pan, X. Y.; Lim, C. H.; Chan-Park, M. B.; Zhu, X.; Beuerman, R. W. Biomacromolecules 2007, 8, 376.
112.Chlopek, J.; Chochol, M. A.; Paluszkiewicz, C.; Jaworska, J.; Kasperczyk, J.; Dobrzyński, P. Polym Degrad Stab 2009, 94, 1479.
113.Impallomeni, G.; Giuffrida, M.; Barbuzzi, T.; Musumarra, G.; Ballistreri, A. Biomacromolecules 2002, 3, 835.
114.Wu, C. S. J Appl Polym Sci Symp 2004, 94, 1000.
115.Wu, C. S. J Appl Polym Sci Symp 2003, 89, 2888.
116.Wu, C. S.; Lai, S. M.; Liao, H. T. J Appl Polym Sci Symp 2002, 85, 2905.
117.Huang, M. H.; Li, S.; Vert, M. Polymer 2004, 45, 8675.
118.Wu, C. S. Polymer 2005, 46, 147.

無法下載圖示 全文公開日期 2016/06/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE