簡易檢索 / 詳目顯示

研究生: 陳建中
Jian-jung Chen
論文名稱: 利用磷脂基乙醇胺為骨架的生物可降解脂質之合成
Synthesis of biodegradable lipid by using the skeleton of phosphatidylethanolamine
指導教授: 曾文祺
Wen-chi Tseng
口試委員: 廖本瑞
Ben-ruey Liaw
方翠筠
Tsuei-yun Fang
鄭如忠
Ru-jong Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 93
中文關鍵詞: 微脂粒胜肽合成基因治療
外文關鍵詞: liposome, peptide synthesis, gene delivery
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基因治療為近年來所發展出最具潛力的醫療技術,可被定義為利用遺傳技術將基因送入病人體內以治療病人的醫療行為。基因治療有兩種系統,分別為病毒載體系統及非病毒載體系統兩種,病毒載體雖然有較好的轉染傳遞效果,但是其安全性及免疫性皆為重要考量。由於非病毒載體擁有較佳的安全性且在製備上較容易,所以目前被廣為開發研究。
    本研究選用對基因傳遞可提升效果之輔助性脂質磷脂基乙醇胺(DOPE) 與組胺酸 (Histidine) 進行化學接枝,其進行接枝的方法是先採用固相胜肽合成法,將經Fmoc保護基保護之組胺酸(Fmoc-His(Trt)-OH) 接合至固相載體 (2-Chlorotrityl chloride resin) 上。同時,我們採用Succinic anhydride將DOPE之胺端改為羧端,形成一新化合物DOPE acid。我們採取相同的固相胜肽合成法,將DOPE acid接合上含組胺酸之固相載體;由於2-Chlorotrityl chloride resin可在酸性條件下被移除,因此採用1% 之Trifluoroacetic acid溶液將產物DOPE-Histidine從載體上切除,切除後使用高壓液相層析法 (HPLC) 來進行分離純化。
    由HPLC分離純化後,取產物進行電灑游離法 (MS-ESI) 進行質量分析;由實驗結果可得知,Mass圖譜在分子量為980m/z位置有波峰出現,但其純度並不高。因此,我們得知由固相胜肽合成方法可取得我們所要的產物DOPE acid,只是其分離方法或許須朝向傳統有機合成的分離方法,如萃取或是管柱層析法,以期能使產物得到更高的純度。


    Gene therapy has been developed rapidly in recent years because of its potential in medical treatments. It can be defined as the use of genetic technology to treat patients by gene delivery. Research in gene therapy has been focused on the development of suitable carriers. Gene therapy has two types of delivery systems, viral vectors and non-viral vectors. Although viral vectors result in better efficiency, but its safety and immunity might present safety concerns. Non-viral vectors have been regarded a safer approach and easier to be prepared.
    In this study, we attempted to graft histidine onto 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) . We used Fmoc solid phase peptide synthesis to synthesize the peptide. We chose 2-chlorotrityl chloride resin for the grafting of the protected amino acid (Fmoc-His(Trt)-OH). On the other hand, we synthesized DOPE acid from DOPE by using succinic anhydride to change the amino group to carboxyl group of DOPE. Then we used the solid phase method to graft DOPE acid onto the peptidyl resin. Because the resin contained highly acid-sensitive linkers, we prepared a cleavage solution which contains 1% trifluoroacetic acid to cleavage DOPE-Histidine from peptidyl resin. The obtained product, DOPE-Histidine, was purified by high pressure liquid chromatography. The results of mass spectrometry showed successful synthesis of DOPE-Histidine, but with less desirable purity.
    The results suggested that we might use different methods to purify DOPE-Histidine, such as extraction or column chromatography, in order to obtain better purity.

    中文摘要I 英文摘要III 目錄IV 表目錄IX 圖目錄X 縮寫表XIV 第一章 緒論1 1.1前言1 1.2 研究動機3 第二章 文獻回顧4 2.1 胜肽合成之發展4 2.2 胜肽合成方法介紹5 2.2-1 液相胜肽合成 (Solution phase peptide synthesis)5 2.2-2 固相胜肽合成 (Solid phase peptide synthesis)5 2.3 樹脂的選擇8 2.4 羧基、胺基、側鏈的保護及脫除8 2.5 固相合成的特點及存在的主要問題9 2.6 固相合成的研究發展及前景10 2.7 胜肽鍵之分析與純化10 2.8 基因治療 (Gene therapy)11 2.8-1 基因治療途徑12 2.8-2 基因治療載體系統12 2.8-2-1 病毒載體系統 (Viral vectors)13 2.8-2-2 非病毒載體系統 (Non-viral vectors)14 2.8-3 陽離子聚合物 (Cationic polymers)15 2.8-3-1 聚乙烯亞胺 (Polyethylenimine,PEI)15 2.8-3-2 聚離胺酸 (Poly(L-lysine),PLL)15 2.8-4 微脂粒 (Liposome)16 2.8-4-1 以微脂粒作為藥物載體有以下優點17 2.8-4-2 依據微脂粒粒徑大小及脂雙層層數的差異,可分類成以下幾種19 2.8-4-3 微脂粒與細胞間之作用方式20 2.8-5 正電荷微脂粒載體 (Cationic lipids)21 2.8-6 正電荷微脂粒系統的轉染作用機制22 第三章 實驗材料與步驟25 3.1 儀器 25 3.2 藥品 26 3.3 實驗步驟28 3.3-1 合成 DOPE Acid28 3.3-2 Coupling Histidine30 3.3-2-1 Resin Preparation30 3.3-2-2製備Coupling Solution31 3.3-2-3 Coupling reaction32 3.3-3 Ninhydrin Test33 3.3-4 Deprotection of Fmoc側保護基34 3.3-5 Coupling DOPE acid to peptidyl resin35 3.3-5-1 製備Coupling Solution35 3.3-5-2 Coupling reaction36 3.3-6 Cleavage from the resin37 3.3-6-1 Prepare Peptide Resin for Cleavage37 3.3-6-2 Cleavage using dilute TFA38 3.3-7 對樣品DOPE-Histidine做分析41 3.3-7-1 配製HPLC之移動相溶劑 (Mobile Phase)41 3.3-7-2 樣品DOPE-Histidine準備41 3.3-7-3 HPLC背景條件設定 (分析)41 3.3-7-4 HPLC背景條件設定 (量化)42 3.3-8 收集樣品及樣品處理43 第四章 結果與討論44 4.1 合成DOPE acid44 4.2 Coupling Histidine45 4.2-1 Resin Preparation45 4.2-2製備Coupling Solution45 4.2-3 Coupling reaction46 4.3 Ninhydrin Test46 4.4 Deprotection of Fmoc側保護基47 4.5 Coupling DOPE acid48 4.6 Cleavage from the resin48 4.7 對樣品DOPE-Histidine做純化分析50 4.7-1 在背景為波長250nm下進行不同背景條件HPLC分析51 4.7-1-1 條件一51 4.7-1-2 條件二51 4.7-1-2 條件三52 4.7-1-3 條件四52 4.7-1-4 條件五53 4.7-2 在背景為波長220nm下進行HPLC分析54 4.7-2-1 對DOPE-Histidine做分析54 4.7-2-2 對L-Histidine做分析54 4.7-2-3 對DOPE-Histidine混合L-Histidine做分析55 4.7-2-4 對DOPE-Histidine作量化收集 (條件測試)55 4.7-2-5 對DOPE-Histidine作量化收集 (批次一到批次三)57 4.7-2-6 對DOPE-Histidine作量化收集 (純度測試)57 4.8 對DOPE-Histidine進行電灑游離法 (MS-ESI) 做質量分析58 第五章 結論59 參考文獻60 附錄B66 附錄C76 表目錄 表1 實驗儀器一覽表25 表2 實驗藥品一覽表26 表3 HPLC標準梯度條件42 表4 HPLC量化梯度條件43 表5 在250nm下分析梯度條件一51 表6 在250nm下分析梯度條件二51 表7 在250nm下分析梯度條件三52 表8 在250nm下分析梯度條件四52 表9 在250nm下分析梯度條件五53 表10在220nm下HPLC分析梯度條件 (DOPE-Histidie)54 表11在220nm下HPLC分析梯度條件 (L-Histidine)54 表12在220nm下HPLC分析梯度條件 (混合)55 表13在220nm下HPLC分析梯度條件 (量化條件測試)56 表14在220nm下HPLC分析梯度條件 (量化收集)57 表15在220nm下HPLC分析梯度條件 (純度測試)57 圖目錄 圖A.1 SPPS合成法中常使用的保護基6 圖A.2 Fmoc固相胜肽合成法流程圖7 圖A.3 PEI結構圖16 圖A.4 PLL結構圖16 圖A.5 磷脂質結構圖18 圖A.6 微脂粒的基本型態18 圖A.7 各種微脂粒之構型19 圖A.8 DOTAP結構圖21 圖A.9微脂粒與DNA在細胞的轉染作用24 圖A.10 DOPE 結構圖24 圖A.11六角柱相 (Hexagonal) 結構圖24 圖A.12 2-Chlorotrityl chloride resin樹脂 (固相載體)30 圖A.13合成DOPE acid反應途徑31 圖A.14合成Fmoc–His(Trt)–Resin的反應途徑33 圖A.15合成His( Trt )-Resin反應途徑35 圖 A.16合成DOPE-His(Trt)-Resin的反應途徑37 圖A.17合成DOPE-Hstidine的反應途徑39 圖A.18 合成DOPE-Histidine步驟流程圖40 圖A.19 Ninhydrin Test反應簡式圖47 圖A.20 Acid mediated equilibrium of S-Trt derivatives49 圖B.1 合成DOPE acid的TLC測試 (Ninhydrin染色)66 圖B.2 合成DOPE acid 的TLC測試 (碘染色) 67 圖 B.3 使用HPLC在波長250 nm下分析DOPE-Histidine (背景條件一)68 圖B.4 使用HPLC在波長250 nm下分析DOPE-Histidine (背景條件二)68 圖 B.5 使用HPLC在波長250 nm下分析DOPE-Histidine (背景條件三)69 圖B.6 使用HPLC在波長250 nm下分析DOPE-Histidine (背景條件四)69 圖 B.7 使用HPLC在波長250 nm下分析DOPE-Histidine (背景條件五)70 圖B.8 使用HPLC在波長220 nm下分析DOPE-Histidine70 圖B.9 使用HPLC在波長220 nm下分析DOPE-Histidine (量化條件測試)71 圖B.10 使用HPLC在波長220 nm下分析DOPE-Histidine (量化第一批次)71 圖B.11使用HPLC在波長220 nm下分析DOPE-Histidine (量化第二批次)72 圖B.12使用HPLC在波長220 nm下分析DOPE-Histidine (量化第三批次)72 圖B.13使用HPLC在波長220 nm下分析DOPE-Histidine (測試量化第一批次純度)73 圖B.14使用HPLC在波長220 nm下分析DOPE-Histidine (測試量化第二批次純度)73 圖B.15使用HPLC在波長220 nm下分析DOPE-Histidine (測試量化第三批次純度)74 圖B.16 使用HPLC在波長220 nm下分析L-Histidine74 圖B.17 使用HPLC在波長220 nm下分析DOPE-Histidine 與L-Histidine混合75 圖B.18 DOPE-Histidine在UV (190 nm-400 nm)下測試吸收位置75 圖C.1 DOPE於CDCl3,500 MHZ下的H-NMR圖譜76 圖C.2 DOPE acid於CDCl3,500 MHZ下的H-NMR圖譜77 圖C.3 DOPE於CHCl3,ESI下的Mass圖譜78 圖C.4 DOPE acid於CHCl3,ESI下的Mass圖譜79 圖C.5 DOPE-Histidie於CHCl3,ESI下的Mass圖譜80 圖C.6 DOPE-Histidie於CHCl3,ESI下的Mass圖譜81

    1.McTaggart, S. and M. Al-Rubeai, “Retroviral vectors for human gene delivery,” Biotechnology Advances, Vol. 20, No. 1, p.p. 1-31 (2002)
    2.Godbey, W.T., K.K. Wu, and A.G. Mikos, “Poly(ethylenimine) and its role in gene delivery,” Journal of Controlled Release, Vol. 60, No. 2 p.p. 149-160 (1999)
    3.Merrifield, R.B., “Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide,” Journal of the American Chemical Society, Vol. 85, No. 14, p.p. 2149-2154 (2002)
    4.Nishiuchi, Y., et al., “Chemical synthesis of the precursor molecule of the Aequorea green fluorescent protein, subsequent folding, and development of fluorescence,” Proceedings of the National Academy of Science U S A, Vol. 95, No. 23, p.p. 13549-13554 (1998)
    5.Mourtas, S., et al., Resin-bound aminothiols: synthesis and application. Tetrahedron Letters, Vol. 44, No. 1, p.p. 179-182 (2003)
    6.Kirin, S.I., et al., “Manual solid-phase peptide synthesis of metallocene-peptide bioconjugates,” Journal of Chemical Education, Vol. 84, No. 1, p.p. 108-111 (2007)
    7.Knorr, R., et al., “New coupling reagents in peptide chemistry,” Tetrahedron Letters, Vol. 30, No. 15, p.p. 1927-1930 (1989)
    8.Canne, L.E., et al., “Chemical Protein Synthesis by Solid Phase Ligation of Unprotected Peptide Segments,” Journal of the American Chemical Society, Vol. 121,No. 38: p.p. 8720-8727 (1999)
    9.Mergler, M., et al., “Synthesis and application of Fmoc-His(3-Bum)-OH,” Journal of Peptide Science, Vol. 7, No. 9, p.p. 502-510 (2001)
    10.Miranda, L.P. and P.F. Alewood, “Accelerated chemical synthesis of peptides and small proteins,” Proceedings of the National Academy of Science U S A, Vol. 96, No. 4, p.p. 1181-1186 (1999)
    11.Tam, J.P., W.F. Heath, and R.B. Merrifield, “An SN2 deprotection of synthetic peptides with a low concentration of hydrofluoric acid in dimethyl sulfide: evidence and application in peptide synthesis,” Journal of the American Chemical Society, Vol. 105, No. 21, p.p. 6442- 6455 (2002)
    12.Chiva, C., et al., “An HPLC-ESMS study on the solid-phase assembly of C-terminal proline peptides,” Journal of Peptide Science, Vol. 5, No. 3, p.p. 131-140 (1999)
    13.胡育誠,「基因治療的過去與展望」,科學發展,372,42- 45頁,2003。
    14.Simoes, S., et al., “Cationic liposomes as gene transfer vectors: Barriers to successful application in gene therapy,” Current Opinion in Molecular Therapeutics, Vol. 1, No. 2, p.p. 147-157 (1999)
    15.Lee, H., J.H. Jeong, and T.G. Park, “PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity,” Journal of Controlled Release, Vol. 79, No. 1, p.p. 283-291(2002)
    16.Engelhardt, J.F., et al., “Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver,” Proceedings of the National Academy of Science U S A, Vol. 91, No. 13, p.p. 6196-6200 (1994)
    17.Lieber, A., et al., “Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo,” The Journal of Virology, Vol. 70, No. 12, p.p. 8944-8960 (1996)
    18.Weitzman, M.D., et al., “Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA,” Proceedings of the National Academy of Science U S A, Vol. 91, No. 13, p.p. 5808-5812 (1994)
    19.Behr, J.P., “Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy,” Bioconjugate Chemistry, Vol. 5, No. 5, p.p. 382-389 (1994)
    20.Roth, C.M. and S. Sundaram, “Engineering synthetic vectors for improved DNA delivery: insights from intracellular pathways,” Annual Review of Biomedical Engineering, Vol. 6, p.p. 397-426 (2004)
    21.De Smedt, S.C., J. Demeester, and W.E. Hennink, “Cationic polymer based gene delivery systems,” Pharmaceutical Research, Vol. 17, No. 2, p.p. 113-126 (2000)
    22.Wu, G.Y. and C.H. Wu, “Receptor-mediated in vitro gene transformation by a soluble DNA carrier system,” Journal of Biologicl Chemistry, Vol. 262, No. 10, p.p. 4429-4432 (1987)
    23.Bangham, A.D., M.M. Standish, and J.C. Watkins, “Diffusion of univalent ions across the lamellae of swollen phospholipids,” Journal of Molecular Biology, Vol. 13, No. 1, p.p. 238-252 (1965)
    24.Pinto-Alphandary, H., A. Andremont, and P. Couvreur, “Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications,” International Journal of Antimicrobial Agents, Vol. 13, No. 3, p.p. 155-168 (2000)
    25.Weiner, N., F. Martin, and M. Riaz, “Liposomes as a Drug Delivery System,”Drug Development and Industrial Pharmacy, Vol. 15, No. 10, p.p. 1523-1554 (1989)
    26.R.R.C.New, Liposome: a practical approach Oxford University Press. p.p. 221-225 (2000)
    27.Gao, X. and L. Huang, “Cationic Liposomes and Polymers for Gene Transfer,” Journal of Liposome Research, Vol. 3, No. 1, p.p. 17-30 (1993)
    28.El-Aneed, A., “An overview of current delivery systems in cancer gene therapy,” Journal of Controlled Release, Vol. 94, No. 1, p.p. 1-14 (2004)
    29.Ewert, K., et al., “Efficient synthesis and cell-transfection properties of a new multivalent cationic lipid for nonviral gene delivery,” Journal of Medical Chemistry, Vol. 45, No. 23, p.p. 5023-5029 (2002)
    30.Godbey, W.T., K.K. Wu, and A.G. Mikos, “Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, No. 9, p.p. 5177-5181 (1999)
    31.Zuhorn, I.S., R. Kalicharan, and D. Hoekstra, “Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis,” Journal of Biological Chemistry., Vol.227, No. 20, p.p. 18021-18028 (2002)
    32.Pedroso de Lima, M.C., et al., “Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications,” Advanced Drug Delivery Reviews, Vol. 47, No.2, p.p. 277-294 (2001)
    33.May, S. and A. Ben-Shaul, “DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures,” Biophysical Journal, Vol. 73, No. 5, p.p. 2427-2440 (1997)
    34.Dan, N., “The structure of DNA complexes with cationic liposomes-cylindrical or flat bilayers?,” Biochimica and Biophysica Acta, Vol. 1369, No. 1, p.p. 34-38 (1998)
    35.Farhood, H., N. Serbina, and L. Huang, “The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer,” Biochimica and Biophysica Acta, Vol. 1235, No. 2, p.p. 289- 295 (1995)
    36.Schmitt, L., C. Dietrich, and R. Tampe, “Synthesis and Characterization of Chelator-Lipids for Reversible Immobilization of Engineered Proteins at Self-Assembled Lipid Interfaces,” Journal of the American Chemical Society, Vol. 116, No. 19, p.p. 8485-8491 (2002)
    37.Lee, C.L. and M.M. Sim, “Solid-phase combinatorial synthesis of 5-arylalkylidene rhodanine,” Tetrahedron Letters, .Vol.41, No. 30, p.p. 5729-5732 (2000)
    38.Batra, S., et al., “A novel isoxazole-based scaffold for combinatorial chemistry,” Tetrahedron Letters, Vol. 41, No. 31, p.p. 5971-5974 (2000)
    39.Nash, I.A., B.W. Bycroft, and W.C. Chan, “Dde -- A selective primary amine protecting group: A facile solid phase synthetic approach to polyamine conjugates,” Tetrahedron Letters, Vol. 37, No. 15, p.p. 2625-2628 (1996)
    40.Palasek, S.A., Z.J. Cox, and J.M. Collins, “Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis,” Journal of Peptide Science, Vol. 13, No. 3, p.p. 143- 148 (2007)
    41.Gelens, E., et al., “Solid-Phase synthesis of 4-substituted imidazoles using a scaffold approach,” Bioorganic & Medicinal Chemistry Letters, Vol. 10, No. 17, p.p. 1935-1938 (2000)
    42.Eleftheriou, S., et al., “Attachment of histidine, histamine and urocanic acid to resins of the trityl-type,” Tetrahedron Letters, Vol. 40, No. 14, p.p. 2825-2828 (1999)
    43.Di Gioia, M.L., et al., “Solid-Phase Synthesis of N-Nosyl- and N-Fmoc-N-Methyl-α-amino Acids,” The Journal of Organic Chemistry, Vol. 72, No. 10, p.p. 3723-3728 (2007)
    44.Friedman, M. and L. David Williams, “Stoichiometry of formation of Ruhemann's purple in the ninhydrin reaction,” Bioorganic Chemistry, Vol. 3, No. 3, p.p. 267-280 (1974)
    45.Carpino, L.A. and G.Y. Han, “9-Fluorenylmethoxycarbonyl amino-protecting group. The Journal of Organic Chemistry, 2002. 37(22): p.p. 3404-3409.
    46.Barlos, K., et al.,“Darstellung geschützter peptid-fragmente unter einsatz substituierter triphenylmethyl-harze,“ Tetrahedron Letters, Vol. 30, No. 30, p.p. 3943-3946 (1989)

    無法下載圖示 全文公開日期 2014/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE