簡易檢索 / 詳目顯示

研究生: 林淑娟
Shu-Chuan Lin
論文名稱: 高速直調雷射之傳輸性能改善及應用於WDM-PONs系統之研究
Performance Enhancement on Multiple Directly Modulated Channels for WDM-PONs Application
指導教授: 李三良
San-Liang Lee
口試委員: 劉政光教授
eng-Kuang Liu
廖顯奎
Shien-Kuei Liaw
徐世祥
Shih-His Hsu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 114
中文關鍵詞: 分波多工直接調變雷射頻率啁啾法布里-比洛 析光器
外文關鍵詞: directly modulated laser, frequency chirp Fabry-Perot etalon
相關次數: 點閱:204下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究重點包括了10 Gb/s直調雷射傳輸性能的研究、針對其傳輸訊號品質提出改善方法,並將10 Gb/s直調雷射應用於分波多工被動光網路系統中。使用光頻譜與光脈波整形的設計,可以增加以直調雷射作為光發射機之光纖網路傳輸的距離。本論文中,我們提出藉由一個簡單的法布里-比洛析光器作為頻譜整形器的可行性,將其應用於分波多工光接取網路中。直調雷射產生的絕熱與暫態頻率啁啾效應可藉由使用時域解析頻譜技術量測出啁啾值,進行詳細地分析。經由頻譜整形的作用,可針對雷射設定的明滅比與絕熱啁啾值,獲得最佳的工作條件範疇,此方法可用來同時改善多個直調雷射的傳輸特性,在多個10 Gb/s直調雷射的輸出端,加入一個單共振腔式法布里-比洛析光器,可以在1550 奈米波段,將雷射傳輸距離從小於 10公里延伸到大於 50公里。因為析光器的濾波能力的限制,我們針對如何選擇雷射初始設定的明滅比與析光器的精細度,以實驗與模擬做詳細地討論。
    在分波多工被動光網路系統中若用直調雷射作為中央機房的的光發射機,並以反射式半導體光放大器作為用戶端的調變器,最大的難題在於下行傳輸訊號的明滅比和上行傳輸訊號的品質之間必須作取捨。我們提出在每個用戶端下行光接收機前加入一法布里-比洛析光器增強訊號品質,析光器的功能為對下行光訊號之頻譜與光脈波波形作整形,這個方法允許下行訊號有低明滅比,有效抑制下行訊號對反射式半導體光放大器再調變上行訊號的光強度擾動現象。這個方法同時降低雷射的暫態啁啾值,因此也可以延伸傳輸距離。並且仍然可以保持無色光源的操作,並且同一法布里-比洛析光器可以用來補償多個雷射通道。實驗結果證實此方法可大幅提升一個具有10 Gb/s下行傳輸速率與1.25 Gb/s上行速率的分波多工被動光網路的傳輸品質。


    This thesis includes the investigation of the chirp characteristics for 10 Gb/s directly modulated lasers (DMLs), performance improvement of the performance of a 10 Gb/s DML transmission system, and application of the technologies to a wavelength-division-multiplexing passive optical network (WDM-PON) system.
    The spectral and waveform reshaping schemes can enhance the transmission distance of fiber links that use DMLs as transmitters. In this thesis, we prove the feasibility of using a simple Fabry-Perot (FP) etalon as the spectral reshapers for applications in WDM access networks. The transient chirp and adiabatic chirp of a DML are analyzed in detail by using the time-resolved chirp measurement. The effects of the original extinction ratio and the adiabatic chirp on the spectral reshaping are clarified to obtain the optimal operation conditions. It is shown that by placing a single-cavity FP etalon filter after multiple 10-Gb/s directly modulated lasers can extend their transmission distances from < 10 km to >50 km at the 1.55-m wavelength window. Due to the limited filtering capability of the etalon, the choice of the original extinction ratio (ER) and finesse of the etalon is discussed in detail from the experiments and simulation.
    The ER for the downstream ER and the upstream transmission performance needs to be compromised for the WDM-PON systems with DMLs at the center office and reflective semiconductor optical amplifiers (RSOAs) at the user ends. We propose to enhance the performance by adding a FP etalon before the receiver of each optical network unit (ONU). The etalon performs spectral reshaping and then waveform reshaping to the downstream signals. This allows the use of low-ER downstream signals that reduce the intensity fluctuation of RSOA-remodulated upstream signals. This approach can also extend the transmission distance by reducing the transient chirp. Colorless operation can still be obtained since the same etalon can be used to enhance multiple wavelength channels. Experimental results verify considerable performance improvement on WDM-PONs with 10-Gb/s and 1.25-Gb/s data rates for the downstream and upstream transmission, respectively.

    論 文 摘 要 I Abstract III 誌 謝 V 目 錄 VI 符號索引表 VIII 圖表索引 X 第一章 緒論 1 1.1 前言 1 1.2 WDM-PON 介紹 4 1.3 研究目的與動機 11 1.4論文架構 13 第二章 直調雷射的特性 15 2.1 雷射特性 15 2.1.1 連續波(CW)的特性 15 2.1.2 半導體雷射的大信號響應 17 2.2 頻率啁啾效應 21 2.3 啁啾效應的測量方法 26 2.3.1 頻率鑑別法 26 2.3.2 時間解析(Time-Resolved)啁啾量測法 27 2.3.3直調雷射頻率啁啾量測結果 30 第三章 直調雷射的啁啾效應在傳輸上的影響與改善 33 3.1啁啾效應對光訊號脈波的影響之討論 33 3.2 改善直調雷射特性之研究討論 37 3.2.1 降低暫態啁啾方法 38 3.2.1.1雙折射光纖迴路 38 3.2.1.2光延遲干涉法 39 3.2.1.3 使用WDM 系統中既有的解多工器 40 3.2.2 增加傳輸之距離 42 3.3基於法布里-比洛析光器之光濾波器 44 3.3.1 析光器的溫度特性 49 第四章 直調雷射的傳輸特性之提升 51 4.1 前言 51 4.1.1 頻率啁啾引起的光功率償付值(power penalty) 51 4.1.2 明滅比對訊號品質的影響 52 4.2 傳輸實驗結果 54 4.2.1 操作原理 54 4.2.2 以法布里-比洛析光器作為濾波器之效用 55 4.2.3單一雷射性能提昇之傳輸驗證 59 4.2.4 多通道雷射經補償後的傳輸情形 70 4.2.5 析光器精細度與雷射明滅比的最佳化設計 73 4.3 結論 76 第五章 應用直調雷射於分波多工被動光網路之研究 77 5.1 前言 77 5.2 RSOA 特性 81 5.3 使用反射式半導體光放大器的分波多工被動光網路 84 5.3.1 操作原理 84 5.3.2 傳輸訊號之量測結果 86 5.4 系統雜訊源之討論 91 5.5 討論與比較 95 5.6 結論 99 第六章 結論與未來發展 100 參考文獻 103 著作列表 112 ▓學術性期刊論文 112 ▓學術性研討會論文 112 作者簡介 114

    [1] A. Banerjee, G. Kramer, Y. Ye, S. Dixit and B. Mukherjee, “Emerging optical network technologies: architectures, protocols and performance”, Springer Science, Chapter 3, Advances in optical networks (PONs), pp. 52, 2005.
    [2] K. Grobe and J. P. Elbers, “PON evolution from TDMA to WDM-PON”, OFC/NFOEC 2008, NThD6, San Diego, USA.
    [3] C. H. Lee, W. V. Sorin and B. Y. Kim, “Fiber to the home using a PON infrastructure (invited paper)”, IEEE J. Lightwave. Technol., vol. 24, no. 12, pp.4568-4583, Dec. 2006.
    [4] R. D. Feldman,, E. E. Harstead, S. Jiang, T. H. Wood and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access (invited paper)”, IEEE J. Lightwave. Technol., vol. 16, no. 9, pp.1546-1559, Sept. 1998.
    [5] A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim and B. Mukherjee, ”Wavelength division multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [invited]”, J. Optical Networking, vol. 4, no. 11, pp. 737-758, Nov. 2005.
    [6] J. Prat, C. Bock, J. A. Lazaro and V. Polo, “Next generation architectures for optical access”, ECOC 2006, Th2.1.3, Cannes, France.
    [7] S. Park, G. Y. Kim and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol., vol. 12, no. 2, pp. 162–169, Apr. 2006.
    [8] N. Kashima, “Dynamic properties of FP-LD transmitters using side-mode injection locking for LANs and WDM-PONs”, IEEE J. Lightwave. Technol., vol. 24, no. 8, pp. 3045-3058, August 2006.
    [9] F. Payoux, P. Chanclou and N. Genay, “WDM-PON with colorless ONUs”, OFC2007, OTuG5, Anaheim, California, U.S.A.
    [10] G. P. Agrawal, “Fiber-optic communication systems”, 3rd edition, Wiley, New-York, 2002.
    [11] T. P. Lee, C. A. Burrus and R. H. Saul, “Optical fiber telecommunications II”, Academic Press, 1988.
    [12] R. S. Tucker, “High-speed modulation of semiconductor laser,” IEEE J. Lightwave. Technol., vol. LT-3, no. 6, pp. 2572-2584, December 1985.
    [13] I. Tomkos, I. Roudas, R. Hesse, N. Antoniades, A. Boskovic and R. Vodhanel, “Extraction of laser rate equations parameters for representative simulations of metropolitan-area transmission systems and networks”, Optics Commun., vol. 194, pp. 109-129, July 2001.
    [14] P. J. Corvini and T. L. Koch, “Computer simulation of high bit rate optical fiber transmission using single frequency lasers”, IEEE J. Lightwave. Technol., vol. 5, no. 11, pp. 1591-1595, Nov. 1987.
    [15] K. Hinton and T. Stephens, “Modeling high-speed optical transmission systems”, IEEE J. Select. Areas Commun., vol. 11, no.3, pp.380-392, April 1993.
    [16] J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance”, IEEE J. Lightwave. Technol., vol. 7, no. 3, pp. 568-573, Mar. 1989.
    [17] F. Koyama and K. Iga, “Frequency chirping in external modulators” IEEE J. Lightwave. Technol., vol. 6, no. 1, pp. 87-93, Jan. 1988.
    [18] R. A. Linke, “Modulation induced transient chirping in single frequency lasers”, IEEE J. Quantum Electronics, vol. QE-21, no. 6, pp.593-597, June 1985.
    [19] B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber”, IEEE J. Lightwave. Technol., vol. 10, no. 7, pp. 964-970, July 1992.
    [20] S. Yamamoto and M. Kuwazuru, H. Wakabayashi and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-&micro;m DFB-LD high-speed optical fiber transmission systems”, IEEE J. Lightwave. Technol., vol. 5, no. 10, pp. 1518-1524, Oct. 1987.
    [21] C. Laverdiere, A. Fekecs and M. Tetu, “A new method for measuring time-resolved frequency chirp of high-bit-rate sources,” IEEE Photonics Technol. Lett., vol. 15, no. 3, pp. 446-448, March 2003.
    [22] R. A. Saunder, J. P. King, and I. Hardcastle, “Wideband chirp measurement technique for high-bit-rate sources,” Electron. Lett., vol. 30, no. 16, pp. 1336-1338, August 1994.
    [23] R. S. Vodhanel, and S. Tsuji, “12GHz FM bandwidth for a 1530nm DFB laser,” Electron. Lett., vol. 24, no. 22, pp. 1359-1361, October 1988.
    [24] Agilent Technologies, “Making time-resolved chirp measurements using the optical spectrum analyzer and digital communications analyzer”, Application note 1550-7.
    [25] L. A. Coldren and S. W. Corzine, “Diode lasers and photonic integrated circuits”, pp. 213-215, John Wiley & Sons, Canada, 1995.
    [26] B.E.A. Saleh and M.C. Teich, “Fundamentals of photonics”, Willey, 1991.
    [27] P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber”, Opto-electronics review, vol. 14, no. 2, pp.123-128, Sept. 2006.
    [28] I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett., vol. 13, no. 7, pp.735–737, 2001.
    [29] H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett., vol. 15, no. 9, pp. 1306-1308, 2003.
    [30] G. Berry, “100 oC, 10 Gb/s directly modulated InGaAsP DFB lasers for uncooled Ethernet applications”, OFC2002, ThF1, Anaheim, California, U.S.A.
    [31] K. Nakahara, T. Tsuchiya, T. Kitatani,K. Shinoda, T. Kikawa, F. Hamano, S. Fujisaki, T, Taniguchi, E. Nomoto, M. Sawada, and T. Yuasa, “12.5-Gb/s Direct modulation up to 115 oC in 1.3-m InGaAlAs-MQW RWG DFB lasers with notch-free grating structure,” IEEE J. Lightwave Technol. vol. 22, no.1, pp. 159-165, 2004.
    [32] K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, “4x40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers”, ECOC2004, We1.5.7, Stockholm, Sweden.
    [33] L. Illing, and M. B. Kennel, “Shaping current waveforms for direct modulation of semiconductor lasers,” IEEE J. Quantum Electron. vol. 40, no. 5, pp. 445-452, 2004.
    [34] M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett., vol. 15, no. 12, pp.1788- 1790, 2003.
    [35] P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Neion, S. Chandrasekhar, L. L. Buhl, M. Winter, D. Castagnoui., “Electronic equalization and FEC enable bi-directional CWDM capacities of 9.6 Tb/s-km”, OFC 2004, postdeadline paper PDP7, Anaheim, California, U.S.A.
    [36] S. Mohrdiek, H. Burkhard, F. Steinhaqen, H. Hillmer, R. Losch, W. Schlapp and R. Gobel, “10 Gb/s standard fiber transmission using a directly modulated 1.55 m quantum well DFB lasers”, IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1357-1359, 1995.
    [37] P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. T. Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 m DFB laser,” Electron Lett., vol. 33, no. 4, pp. 310–311, 1997.
    [38] H. Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” IEEE J. Lightwave. Technol., vol. 17, no. 5, pp.898-903, 1999.
    [39] J. D. Downie and R. S. Vodhanel, “Reach enhancement of a 10Gbps directly modulated laser with demultiplexer filtering,” LEOS 2004, ThE4, 784-785, Rio Grande,Puerto Rico.
    [40] L. S. Yan, and A. E. Willner, “Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,” Optics Express, vol.13, pp. 5106-5115, 2005.
    [41] C. S. Wong, and H. K. Tsang, “Improvement of directly modulated diode-laser pulse using an optical delay interferometer,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 632–634, Feb. 2004.
    [42] C. S. Wong and H. K. Tsang, “Filtering directly modulated laser diode pulses with a Mach-Zehnder optical delay interferometer,” Electron. Lett., vol. 40, no. 15, pp. 938–940, 2004.
    [43] C. W. Chow, C. S. Wong, and H. K. Tsang, “Reduction of amplitude transients and BER of direct modulation laser using birefringent fiber loop,” IEEE Photon. Technol. Lett., vol.17, no.3, pp. 693-695, March 2005.
    [44] B. Wedding, B. Franz, and B. Junginger, “10 Gb/s optical transmission up to 253 km via standard single mode fiber using the method of dispersion supported transmission”, IEEE J. Lightwave. Technol., vol. 12, no. 10, pp.1720-1727, Oct. 1994.
    [45] Y. Matsui, D. Mahgerefteh, .X. Zheng, C. Liao, Z. F. Fan, K. Mccallion and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 385-387, Jan. 2006.
    [46] H. J. Thiele, P. J. Winzer, J. H. Sinsky,L. W. Stulz, Lynn E. Nelson and Franz Fidler, “160-Gb/s CWDM capacity upgrade using 2.5-Gb/s rated uncooled directly modulated lasers”, IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2389-2391, Oct. 2004.
    [47] P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, H. J. Thiele, J. H. Sinsky, S. Chandrasekhar, M. Winter, D. Castagnozzi, L. W. Stulz and L. L. Buhl., “10-Gb/s upgrade of bidirectional CWDM systems using electronic equalization and FEC”, IEEE J. Lightwave. Technol., vol. 2312, no. 1, pp.203-210, Jan. 2005.
    [48] C. L. Yang, S. L. Lee, and J. Wu, “Optical isolator based modules for monitoring DWDM tunable lasers,” J. Optical Networks, vol. 3, pp.452-463, 2004.
    [49] A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems”, IEEE J. Lightwave. Technol., vol. 7, no. 4, pp. 615-624, April 1989.
    [50] Y. C. Chung, “Temperature tuned ZnS etalon filters for WDM systems”, IEEE Photon. Technol. Lett., vol. 4, no. 6, pp. 600-602, June 1992.
    [51] G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 um in silicon etalon”, Electron. Lett., vol. 28, no. 1, pp. 83-85, Jan.1992.
    [52] P. Tayebati, P. D. Wang, D. Vakhshoori, and R. N. Sacks, “Widely tunable Fabry-Perot filter using Ga(Al)As/AlOx deformable mirrors ,” OFC1998, OSA Technical Digest Series, vol. 2, pp. 9-10, Anaheim, California, U.S.A.
    [53] C. K. Madsen and J. H. Zhao, “Optical filter design and analysis”, John Wiley & Sons Inc., New York, 1999.
    [54] M. Born and E. Wolf, “Principles of optics”, 7th ed., Cambridge Univ. Press, Cambridge, 1999.
    [55] G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, “Dispersive properties of optical filters for WDM systems”, IEEE J. Quantum Electronics, vol. 34, no. 8, pp.1390-1402, Aug. 1998.
    [56] M. J. Weber, “Handbook of optical materials”, CRC press 2003.
    [57] M. Bertolotti, “Temperature dependence of the refractive index in semiconductors”, J. Opt. Soc. Am. B, vol. 7, no. 6, pp. 918-922, June 1990.
    [58] R. S. Tucker and L. P. Kaminow, “High frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers,” IEEE J. Lightwave. Technol., vol. LT-2, pp. 385–393, 1984.
    [59] S. Yamamoto, M. Kuwazuru, M, H. Wakabayashi and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-&micro;m DFB-LD high-speed optical fiber transmission systems,” IEEE J. Lightwave Technol., vol. LT-5, pp. 1518–1524, Oct. 1987.
    [60] G. P. Agrawal and M. J. Potasek, “Effect of chirping on the performance of optical communication systems,” Opt. Lett., vol. 11, no. 5, pp. 318–320, May 1986.
    [61] P. K. Lau, and T. Makino, “Effects of laser diode parameters on power penalty in 10 Gb/s optical fiber transmission systems,” IEEE J. Lightwave Technol., vol. 15, no. 9, pp.1663-1668, Sep. 1997.
    [62] P. J. Corvini and T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” IEEE J. Lightwave. Technol., vol. LT-5, pp. 1591–1595, Nov 1987.
    [63] K. Hinton and T. Stephens, “Modeling high-speed optical transmission systems”, IEEE J. on selected areas in comm., vol. 11, no. 3, pp. 380-392, April 1993.
    [64] T. Zhang, N. H. Zhu, B. H. Zhang and X. Zhang, “Measurement of chirp parameter and modulation index of a semiconductor laser based on optical spectrum analysis”, IEEE Photon. Technol. Lett., vol.19, no.2, pp.227-229, Feb. 2007.
    [65] J. Binder and U. Kohn,” 10 Gbps dispersion optimized transmission at 1.55 um wavelength on standard single mode fiber”, IEEE Photon. Technol. Lett., vol. 6, no. 4, pp. 558-560, April 1994.
    [66] K. Sato, S. Kuwahara and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes”, IEEE J. Lightwave. Technol., vol. 23, no. 11, pp. 3790-3797, Nov. 2005.
    [67] VPI photonics, http://www.vpiphotonics.com/index.html

    [68] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” IEEE J. Lightwave. Technol., vol. 22, no. 11, pp. 2582–2591, Nov. 2004.
    [69] K. Iwatsuki, J. I. Kani, H. Suzuki and M. Fujiwara, “Access and metro networks based on WDM technologies,” IEEE J. Lightwave. Technol., vol. 22, no. 11, pp. 2623–2630, Nov. 2004.
    [70] D. J. Shin, Y. C. Keh, J. W. Kwon, E. H. Lee, J. K. Lee,M. K. Park, J. W. Park, Y. K. Oh and C. S. Shim, “Low-cost WDM-PON with colorless bidirectional transceivers” IEEE J. Lightwave. Technol., vol. 24, no. 1, pp. 158-165, Jan. 2006.
    [71] “WDM-PON Technologies; White Paper” from CIP.
    [72] H. D. Kim, S.-G. Kang and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067–1069, Aug. 2000.
    [73] P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett., vol. 37, no. 19, pp. 1181–1182, Sep. 2001.
    [74] F. Payoux, P. Chanclou, M. Moisnard, and R. Brenot, “Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA,” ECOC 2005, vol. 3, pp. 455–456, Paper We 3.3.5, Sep. 25–29, 2005.
    [75] C. Arellano, C. Bock and J. Prat, “RSOA-based optical network units for WDM-PON,” OFC/NFOEC2006, paper OTuCl, Anaheim, U.S.A.
    [76] A. Borghesani, “WDM-based optical feeder for VDSL with electrical powering from the customer premises”, ECOC2006, Cannes, France.
    [77] Novera optics, http://www.noveraoptics.com/
    [78] C. Arellano, C. Bock, J. Prat and K. D. Langer, “RSOA Based optical network units for WDM-PON”, OFC/NFOEC2006, OTuC1, Anaheim, USA.
    [79] S. Y. Kim, E. S. Son, S. B. Jun, and Y. C. Chung, “Effects of downstream modulation formats on the performance of bidirectional WDM-PON using RSOA,” OFC 2007, paper OWD3, Anaheim, California, U.S.A.
    [80] J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. Vegas Olmos, “Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 702-704, Mar. 2005.
    [81] T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission”, IEEE Photon. Technol. Lett, vol. 18, no. 22, pp. 2350-2352, Nov. 2006.
    [82] A. Murakami, Y. J. Lee, K. Y. Cho, Y. Takushima, A. Agata, K. Tanaka, Y. Horiuchi and Y. C. Chung, “Enhanced reflection tolerance of upstream signal in a RSOA-based WDM PON by using manchester coding”, Proc. of SPIE, vol. 6783, pp. 67832I-1~5, 2007.
    [83] J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, “Rayleigh scattering reduction by means of optical frequency dithering in passive optical networks with remotely seeded ONUs,” IEEE Photon. Technol. Lett., vol. 19, no. 02, pp. 64-66, Jan. 2007.
    [84] W. S. Jang, H. C. Kwon, and S. K. Han, “Suppression of Rayleigh backscattering in a bidirectionalWDMoptical link using clipped direct modulation,” in Proc. Inst. Elect. Eng., Optoelectron., vol. 151, no. 4, pp. 219–222, Aug. 2004.
    [85] J. Prat, C. Arellano, V. Polo and J. A. Lazaro, “Frequency-modulated source broadening to reduce Rayleigh backscattering in bidirectional centralized light source WDM-PON access networks”, ECOC 2006 , We4.5.6, Cannes, France.
    [86] http://www.ciphotonics.com/cip_semiconductor_2.htm
    [87] S. C. Lin and S. L. Lee, “Simultaneous improvement on two 10-Gb/s channels with directly modulated lasers,” OECC2006, paper 4F1-5, Taiwan.
    [88] M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” IEEE J. Lightwave. Technol., vol. 24, no. 02, pp. 740–746, Feb. 2006.
    [89] G. Talli, D. Cotter and P.D. Townsend, “Rayleigh backscattering impairments in access networks with centralized light source,” Electron. Lett., vol. 42, no. 15, pp. 877-878, July 2006.
    [90] C. Arellano and J. Prat, “On the influence of ONU-Gain on transmission in centrally seeded-light WDM-PONs,” OFC2007, paper OTuG4, Anaheim, California, U.S.A.
    [91] E. Wong, X. Zhao, C. J. Chang-Hasnain, W. Hofmann and M.C. Amann, “Rayleigh backscattering and extinction ratio study of optically injection-locked 1.55 m VCSELs,” Electron. Lett., vol. 43, no. 3, pp. 182-183, Feb. 2007
    [92] W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong and B. W. Kim., “Frequency detuning effects in a loop-back WDM-PON employing gain saturated RSOAs,” IEEE Photon. Technol. Lett., vol.18, no.13, pp. 1436-1438, July 2006.

    QR CODE