簡易檢索 / 詳目顯示

研究生: 李孟翰
Meng-Han Lee
論文名稱: 基於PPG和ECG訊號之血壓量測裝置的設計與驗證
Design and Verification of a Blood Pressure Measurement Device Based on PPG and ECG Signal
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 林淵翔
Yuan-Hsiang Lin
陳維美
Wei-Mei Chen
阮聖彰
Shanq-Jang Ruan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 非侵入式血壓量測光體積變化描述心電圖脈波到達時間
外文關鍵詞: noninvasive BP measurement, Photoplethysmographu (PPG), Electrocardiogram (ECG), pulse arrival time (PAT)
相關次數: 點閱:257下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血壓數值能夠反映人體心臟與血管的相關疾病,可以做為評估心血管狀況的參考指標。目前血壓量測方法如聽診法或是電子血壓計的振盪法,皆會用到壓脈帶對手臂充放氣,如此會讓使用者感到不舒服且無法作連續的血壓量測,所以本論文希望以脈波到達時間(pulse arrival time,PAT)做為血壓量測的方法,自行開發一套血壓量測裝置。
    此裝置使用的MAX86150生物感測器,可以同時量測心電圖 (ECG)和光體積變化描述波形 (PPG)。本論文開發了ECG的R波和PPG波峰偵測演算法去計算PAT。在10個人的實驗中,每個人量測運動前2次的血壓和運動後2次的血壓。結果發現,利用聽診法量測到的收縮壓數值和PAT的相關性平均為0.76,顯示只有使用PAT參數去推估血壓,可能無法得到準確的血壓數值。
    此外,在本論文也探討使用手指PPG訊號與壓脈帶充放氣的關係,當壓脈帶內部的壓力大於收縮壓時,手指上的PPG訊號就會消失;而壓脈帶放氣時,手指的PPG訊號會逐漸出現,因此藉由PPG訊號來判斷收縮壓的壓力值為何,再與聽診法得到的收縮壓比對後,其平均誤差與標準差為0.18±12.62毫米汞柱。雖然此結果未能達到AAMI標準的5±8毫米汞柱,但是未來可以再繼續利用本裝置去改良更準確的演算法。


    Blood pressure (BP) is one of fundamental reference parameters in cardiovascular assessment, and is highly related to heart diseases and artery diseases. For now, BP measuring method such as auscultatory or oscillometric method will use cuff to pressurized human arm, this will make user uncomfortable and cannot measure BP continuously. In this thesis, we develop a BP measuring device through pulse arrival time (PAT).
    The device is using MAX86150 biosensor to measure Electrocardiogram (ECG) and Photoplethysmography (PPG) simultaneously. In this thesis, We develop a algorithm of ECG R wave and PPG peak detection to calculate PAT. The experiment with 10 subjects, each subject will measure BP twice before and after running. The result shows that the average correlation coefficient between PAT and systolic BP (SBP) measured by auscultatory method is equal to 0.76, it means that only a parameter of PAT to estimate BP may not get the accuracy value.
    Besides, in this thesis , there is a discussion about the relationship of finger’s PPG signal and cuff’s inflation and deflation. Using PPG signal to decide SBP through PPG signal will diappear during cuff’s inflation and it will reappear during cuff’s deflation. The proposed method compared with the SBP value measured by auscultatory method, has a result of 0.18±12.62 mmHg, cannot fit in AAMI standard. Thus, we will keep using selfmade device to imporve a more accuracy algorithm.

    中文摘要 I ABSTRACT II 誌  謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章、 緒論 1 1.1 動機與目的 1 1.2 文獻回顧 3 1.3 論文架構 5 第二章、 背景與原理 6 2.1 血壓 6 2.2 血壓量測分類與工作原理 6 2.2.1 侵入式量測 7 2.2.2 聽診法(Auscultatory method) 7 2.2.3 振盪法(Oscillometric method) 8 2.2.4 脈波到達時間(Pulse Arrival Time) 9 2.3 PPG訊號 10 2.3.1 PPG訊號量測原理 10 2.3.2 PPG量測方式 12 2.4 心電圖訊號 12 第三章、 研究方法 14 3.1 系統設計 14 3.2 硬體架構 15 3.2.1 感測器模組 15 3.2.1.1 ECG生理訊號擷取 17 3.2.1.2 PPG生理訊號擷取 19 3.2.1.3 資料傳輸 19 3.2.2 壓脈帶模組 20 3.2.2.1 壓脈帶充放氣控制 21 3.2.2.2 壓力感測器 21 3.3 演算法 22 3.3.1 訊號量測 22 3.3.1.1 ECG訊號之QRS複合波偵測 22 3.3.1.2 PPG訊號之波峰偵測 23 3.3.1.3 PAT計算 24 3.3.1.4 以PAT估算收縮壓 25 3.3.2 以PPG訊號搭配充放氣的壓脈帶決定收縮壓 26 3.4 使用者介面 29 3.5 實驗設計 29 3.5.1 裝置架設 30 3.5.2 實驗流程 31 3.5.2.1 實驗一-以PPG訊號搭配充放氣的壓脈帶決定收縮壓以及以PAT估算收縮壓 31 3.6 系統驗證 32 第四章、 實驗結果與討論 33 4.1 實驗一結果 33 4.1.1 以PPG訊號搭配充放氣的壓脈帶決定收縮壓 33 4.1.2 以PAT估算收縮壓 36 4.2 結果討論 37 4.2.1 PPG訊號決定收縮壓之準確度 37 4.2.2 脈波到達時間與收縮壓相關性 39 第五章、 結論與未來展望 40 參考文獻 41

    [1] WHO, “The top 10 causes of death.” [Online]. Available: http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. [Accessed: 02-Jul-2018].
    [2] American Heart Association, “Health Threats From High Blood Pressure.” [Online]. Available: http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/LearnHowHBPHarmsYourHealth/Health-Threats-From-High-Blood-Pressure_UCM_002051_Article.jsp#.WznVBNIzaUk. [Accessed: 02-Jul-2018].
    [3] Joseph. J. Car, Introduction Biomedical equipment technology. Pearson, 1991.
    [4] M. Cindy, “Intro to Blood Pressure,” 2013. [Online]. Available: https://www.adctoday.com/blog/intro-blood-pressure. [Accessed: 12-Apr-2018].
    [5] E. Balestrieri and S. Rapuano, “Instruments and methods for calibration of oscillometric blood pressure measurement devices,” Instrum. Meas. …, vol. 59, no. 9, pp. 2391–2404, 2010.
    [6] M. Nitzan, “Automatic noninvasive measurement of arterial blood pressure,” IEEE Instrum. Meas. Mag., vol. 14, no. 1, pp. 32–37, 2011.
    [7] H. Sorvoja, Noninvasive blood pressure pulse detection and blood pressure determination. 2006.
    [8] J. Sola, M. Proenca, D. Ferrario, J. A. Porchet, A. Falhi, O. Grossenbacher, Y. Allemann, S. F. Rimoldi, and C. Sartori, “Noninvasive and nonocclusive blood pressure estimation via a chest sensor,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3505–3513, 2013.
    [9] H. Gesche, D. Grosskurth, G. Küchler, and A. Patzak, “Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method,” Eur. J. Appl. Physiol., vol. 112, no. 1, pp. 309–315, 2012.
    [10] R. A. Payne, “Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure,” J. Appl. Physiol., vol. 100, no. 1, pp. 136–141, 2006.
    [11] F. S. Cattivelli and H. Garudadri, “Noninvasive Cuffless Estimation of Blood Pressure from Pulse Arrival Time and Heart Rate with Adaptive Calibration,” 2009 Sixth Int. Work. Wearable Implant. Body Sens. Networks, no. 1, pp. 114–119, 2009.
    [12] J. Allen and A. Murray, “Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs and toes,” IEE Proc. - Sci. Meas. Technol., vol. 147, no. 6, pp. 403–407, Nov.2000.
    [13] Y. S. Yan and Y. T. Zhang, “A model-based calibration method for noninvasive and cuffless measurement of arterial blood pressure,” IEEE 2006 Biomed. Circuits Syst. Conf. Healthc. Technol. BioCAS 2006, pp. 234–236, 2006.
    [14] A. Jadooei, O. Zaderykhin, and V. I. Shulgin, “Adaptive algorithm for continuous monitoring of blood pressure using a pulse transit time,” 2013 IEEE XXXIII Int. Sci. Conf. Electron. Nanotechnol., no. 4, pp. 297–301, 2013.
    [15] C. C. Y. Poon and Y. T. Zhang, “Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time.,” Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 6, pp. 5877–5880, 2005.
    [16] W. B. Gu, C. C. Y. Poon, and Y. T. Zhang, “A novel parameter from PPG dicrotic notch for estimation of systolic blood pressure using pulse transit time,” Proc. 5th Int. Work. Wearable Implant. Body Sens. Networks, BSN2008, conjunction with 5th Int. Summer Sch. Symp. Med. Devices Biosensors, ISSS-MDBS 2008, no. 2, pp. 86–88, 2008.
    [17] C. C. Y. Poon, Y. T. Zhang, and Y. Liu, “Modeling of Pulse Transit Time under the Effects of Hydrostatic Pressure for Cuffless Blood Pressure Measurements,” 2006 3rd IEEE/EMBS Int. Summer Sch. Med. Devices Biosens., pp. 65–68, 2006.
    [18] S. T. Lin, “A PTT-Based Method for Noninvasive and Continuous Blood Pressure Measurement and Calibration,” 2017.
    [19] X. R. Ding, Y. T. Zhang, J. Liu, W. X. Dai, and H. K. Tsang, “Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio,” IEEE Trans. Biomed. Eng., vol. 9294, no. c, pp. 1–1, 2015.
    [20] O. Zaderykhin and J. Moroz, “Nonlinear electrocardiographic leads system transformations,” vol. 35, p. 2010, 2010.
    [21] M. Forouzanfar, S. Ahmad, I. Batkin, H. R. Dajani, S. Member, V. Z. Groza, M. Bolic, and S. Member, “Model-Based Mean Arterial Pressure Estimation Using Simultaneous Electrocardiogram and Oscillometric Blood Pressure Measurements,” vol. 64, no. 9, pp. 1–10, 2015.
    [22] Y. Z. Yoon, J. M. Kang, Y. Kwon, S. Park, S. Noh, Y. Kim, J. Park, and S. W. Hwang, “Cuff-less Blood Pressure Estimation using Pulse Waveform Analysis and Pulse Arrival Time,” IEEE J. Biomed. Heal. Informatics, vol. 2194, no. c, pp. 1–1, 2017.
    [23] A. Esmaili, M. Kachuee, and M. Shabany, “Nonlinear Cuffless Blood Pressure Estimation of Healthy Subjects Using Pulse Transit Time and Arrival Time,” IEEE Trans. Instrum. Meas., vol. 66, no. 12, pp. 3299–3308, 2017.
    [24] “WHO | Cardiovascular diseases (CVDs),” WHO, 2017. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs317/en/. [Accessed: 17-Apr-2018].
    [25] T. Pickering, “Principles and techniques of blood pressure measurement.,” Cardiol. Clin., vol. 28, no. 4, pp. 571–586, 2010.
    [26] J. G. Webster, Medical Instrumentation Application and Design. Wiley Textbooks, 2009.
    [27] Y. L. Shevchenko and J. E. Tsitlik, “90th Anniversary of the development by Nikolai S. Korotkoff of the auscultatory method of measuring blood pressure.,” Circulation, vol. 94, no. 2, pp. 116–8, Jul.1996.
    [28] B. S. Alpert, D. Quinn, and D. Gallick, “Oscillometric blood pressure: A review for clinicians,” J. Am. Soc. Hypertens., vol. 8, no. 12, pp. 930–938, 2014.
    [29] L. A. (Leslie A.Geddes, Cardiovascular devices and their applications. Wiley, 1984.
    [30] W. Chen, T. Kobayashi, S. Ichikawa, Y. Takeuchi, and T. Togawa, “Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration,” Med. Biol. Eng. Comput., vol. 38, no. 5, pp. 569–574, 2000.
    [31] H. T. Ma, “A blood pressure monitoring method for stroke management,” Biomed Res. Int., vol. 2014, 2014.
    [32] S. Ahmad, S. Chen, K. Soueidan, I. Batkin, M. Bolic, H. Dajani, and V. Groza, “Electrocardiogram-assisted blood pressure estimation,” IEEE Trans. Biomed. Eng., vol. 59, no. 3, pp. 608–618, 2012.
    [33] M. Sharma, K. Barbosa, V. Ho, D. Griggs, T. Ghirmai, S. Krishnan, T. Hsiai, J. C. Chiao, and H. Cao, “Cuff-Less and Continuous Blood Pressure Monitoring: A Methodological Review,” Technologies, vol. 5, no. 2, p. 21, 2017.
    [34] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable Photoplethysmographic Sensors—Past and Present,” Electronics, vol. 3, no. 2, pp. 282–302, 2014.
    [35] “Electrocardiogram (ECG or EKG),” American Heart Association, 2015. [Online]. Available: http://www.heart.org/HEARTORG/Conditions/HeartAttack/DiagnosingaHeartAttack/Electrocardiogram-ECG-or-EKG_UCM_309050_Article.jsp#.WtXpz4huaUk. [Accessed: 17-Apr-2018].
    [36] Wikipedia contributors, “Electrocardiography,” 2018. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Electrocardiography&oldid=834266509.
    [37] S. Liang-Hai, “When is blood pressure not measured on the arm and why?,” 2014. [Online]. Available: https://www.quora.com/When-is-blood-pressure-not-measured-on-the-arm-and-why. [Accessed: 26-Apr-2018].
    [38] N. Semiconductor, “nRF52832 - Product Specification v1.0,” p. 544, 2016.
    [39] M. Integrated, Integrated Photoplethysmogram and Electrocardiogram Bio-Sensor Module For Mobile Health MAX86150 Integrated Photoplethysmogram and Electrocardiogram Bio-Sensor Module For Mobile Health. .
    [40] M. M. Corp, “Pressure Sensor MPS-3117 Series.” [Online]. Available: www.metrodyne.com.tw/datasheets/en/MPS/MPS-3110series.pdf.
    [41] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230–236, 1985.
    [42] Y. H. Lin, C. F. Lin, and H. Z. You, “A driver’s physiological monitoring system based on a wearable PPG sensor and a smartphone,” Commun. Comput. Inf. Sci., vol. 223 CCIS, pp. 326–335, 2011.
    [43] S. T. Lin, W. H. Chen, and Y. H. Lin, “A pulse rate detection method for mouse application based on multi-PPG sensors,” Sensors (Switzerland), vol. 17, no. 7, 2017.
    [44] David M. Lane, “Introduction to Linear Regression.” [Online]. Available: http://onlinestatbook.com/2/regression/intro.html. [Accessed: 15-Jul-2018].

    無法下載圖示 全文公開日期 2023/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE