簡易檢索 / 詳目顯示

研究生: 蔡孟勳
Meng-Husn Tsai
論文名稱: I-III-VI族奈米晶體合成
Synthesis of I-III-VI Group Nanocrystal
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 何郡軒
Jinn-Hsuan Ho
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 125
中文關鍵詞: 二硒化銅銦二硫化銅銦量子點
外文關鍵詞: CuInSe2, CuInS2, Quantum Dot
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以熱注射法與高溫熱裂解法合成I-III-VI族的材料,希望往後能運用在
    太陽能元件上。藉由紫外光/可見光吸收光譜圖、光激發螢光圖譜及載子生命量測系統
    分析其材料的光學性質,並搭配穿透式電子顯微鏡影像、掃描式電子顯微鏡影像及X光
    繞射圖譜了解晶體的結構。

    第一部分:
    首先,藉由合併有向性堆積與配體兩種概念去控有效制晶體的形狀,並進一步
    合成一維及三維結構的CuInSe2晶體。本實驗主要是利用三辛基氧化磷、三辛基化磷
    和脂肪胺當成表面配體及反應溶劑形成穩定成長的環境,並在不同條件下合成不一
    樣的結構。實驗中發現三辛基氧化磷與三辛基化磷會減緩成核的速度;脂肪胺則會
    有效的活化前驅物而導至加速成核的速度,因此透過這兩種成核速度不同的機制控
    制成核成長的速度而獲得規則的CuInSe2奈米晶體。接著改變不同時驗的參數,如反
    應溫度、反應時間和配體(如:一級胺、二級胺與三級胺)去控制晶體晶相和尺寸藉
    此獲得理想的晶體。

    第二部分:
    藉由控制能隙大小來改變量子點放光波長。在CuInS2系統中,能隙受到量子侷限
    效應影響,隨著粒徑變化而改變,並且隨著時間變化,放光波長逐漸紅位移,符合量子
    效應的現象,並且藉由適度增加醋酸銦的比例可提高量子產率。將製備完的CuInS2量
    子點以硬脂酸鋅前驅物做陽離子交換,達到合金結構,量子產率皆有增加的趨勢,可能
    與表面缺陷的修補有很大的關係。透過XPS去確認被鋅所取代的陽離子,且進一步去
    證實放光波長藍位移的原因。


    In this paper, the I-III-VI group material are prepared by hot-injection and thermal
    decomposition, and then hope to use the solar cell in the furture. To comprehend optical and
    crystal structure properties through UV-vis absorbance spectra, photoluminescence spectra,
    carrier lifetime analysis system, transmission electron microscopy, scanning electron
    microscopy and X-ray diffraction spectra.

    First part:
    This paper reports a synthetic route to CuInSe2 (CISe) ternary 3D and 1D nanostructure
    with a controlled shape by combining a oriented attachment and ligand protection strategy. A
    mixture of trioctylphosphine oxide (TOPO), trioctylphosphine (TOP) and aliphatic amine used
    as both a capping agent and a reaction solvent was found to be vary suitable for the preparation
    of three-dimensional flower-like, branched multipod nanostructures, and one-dimensional
    nanowires, under various growth conditions. TOPO/TOP were found to retard the nucleation
    process, and amine could be used as an activation agent by coordinating it with precursors to
    assist with fast nucleation. By taking advantage of these two mechanisms (retarding and
    activating reaction), the rate of the nucleation process could be regulated and CISe nanoflowers
    could be obtained. Comparison of various experiments show that several experimental
    parameters, such as reaction temperature, time, and several capping ligands (primary,
    secondary, and tertiary amines) play important roles in the control of the motphology and size
    of CISe nanostructures.

    Second part:
    This paper reports techniques of changing the peak wavelength by control the energy gap
    of quantum dots. In CuInS2 system, tuning of the energy gap with changes in the quantum dots
    size by quantum confinement effects, and the peak wavelength is red shift with time, it is
    consistent with quantum confinement effects, and then increase moderately in the fraction of
    indium acetate that can increase the quantum yields. In the CuInS2, the zinc stearate precursor
    is added to achieve cation exchange and complete the alloy structure. Quantum yield is on the
    increase , the surface defect states may be relevant. XPS spertra can check the cation replaced
    by zinc stearate, and promise peak wavelength blue shift occurs in the system.

    總 目 錄 中文摘要.........................................................................................................................I 英文摘要.......................................................................................................................II 總目錄..........................................................................................................................III 表目錄........................................................................................................................VII 圖目錄........................................................................................................................VII 第一章、序論..................................................................................................................1 1-1 前言...................................................................................................................1 1-2 研究動機與內容...............................................................................................3 第二章、理論基礎與文獻回顧......................................................................................4 2-1奈米晶體之基本特性........................................................................................4 2-1-1 小尺寸效應..............................................................…………...............4 2-1-2 表面效應………………………………….............................................6 2-2 奈米晶體之相關特性……………………………….......................................8 2-2-1 成核.....…………………………………………....................................8 2-2-2 晶體形狀………………………………………...............................…11 2-2-3 表面配體................…………………………........................….……..18 2-2-4 Ostwald ripening and oriented attachment mechanism........................19 2-2-5 缺陷.......................................................................................................21 2-2-6 吸光原理...............................................................................................24 2-2-7 放光機制...............................................................................................26 2-3 CuInSe2 / CuInS2之性質......................................................................................28 2-3-1 物性及晶體結構...................................................................................28 2-3-2 光學性質...............................................................................................31 2-3-3 CuInSe2 / CuInS2製備方法..................................................................32 2-4 太陽能電池基本原理與相關特性………………………..................................34 2-3-1 太陽光譜………………………………………..................................34 2-4-2 太陽電池的電路模型……………………………………..................35 2-4-3 判別太陽電池效率的參數………………………………............…...37 2-4-4 太陽電池相關結構……………………………………………....…...38 第三章、實驗……………………………………………..................................……..43 3-1 實驗架構…………………………………………………...………..............43 3-2 實驗藥品……………………………………...............………………….….44 3-3 實驗儀器…………………………………………………...............…….….48 3-4 實驗步驟…………………………………………………….........................51 3-4-1 CuInSe2奈米晶體合成………………………………...........…..…...51 3-4-2 CuInS2 & Zn-CuInS2………………......………….............................52 3-5 樣品分析……………………………....…...............................……….…….53 第四章、結果與討論………………..……………………................................……..62 4-1 CuInSe2奈米晶體………………………...………..............................……...62 4-1-1 CuInSe2之合成機制…………………………..................……...…...62 4-1-2 CuInSe2之溶劑-油胺為參數的調整…………………...............…...64 4-1-3 CuInSe2之油胺為參數的調整....……….……….................…...…...66 4-1-4 CuInSe2之反應時間的調整............……………………....................70 4-1-5 CuInSe2之反應溫度的調整................................................................73 4-1-6 CuInSe2之不同碳鏈與不同級數胺類配體的調整........................... 77 4-1-7 CuInSe2之三維結構特性分析............................................................80 4-2 CuInS2 & CuInS2/ZnS…………………………...................................……..….82 4-2-1 CuInS2之溫度參數的調整...............................................................82 4-2-2 CuInS2之前驅物比例為參數的調整...............................................85 4-2-3 CuInS2之最佳前驅物比例下溫度為參數的調整...........................88 4-2-4 CuInS2之固定陽離子濃度下不同溫度為參數的調整...................90 4-2-5 CuInS2之最佳溫度下陽離子濃度為參數的調整...........................95 4-2-6 CuInS2之陽離子交換後相關特性分析...........................................97 第五章、結論…………………………………………….......................................100 參考文獻…………………………………………...................................…..…….101

    參考文獻

    1. Y. W. Jun, J. S. Choi, and J. Cheon, Angew. Chem. Int. Ed, 2007, 46, 4630-4660,“Shape
    Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal
    Routes”
    2. 賴炤銘編撰 (2003),奈米材料的特殊效應與應用, The Chinese Chem. Soc., 61,
    585-597。
    3. J. M. Klostrance and W. C. W. Chan, Adv. Mater., 2006, 18, 1953-1964,“Quantum Dots in
    Biological and Biomedical Research:Recent Progress and Present Challenges”
    4. 馬振基編撰 (2003),奈米材料科技原理與應用,全華科技圖書股份有限公司,臺灣。
    5. 羅吉宗等編撰 (2008),奈米科技導論(修訂版),全華圖書股份有限公司,臺灣。
    6. S. Kumar and T. Nann, small, 2006, 3, 316-319,“Shape Control of II-VI Semiconductor
    Nanomaterials”
    7. A. R. Tao, S. Habas, and P. Yang, small, 2008, 4, 310-325,“Shape Control of Colloidal
    Metal Nanocrystals”
    8. C. B. Murray and C. R. Kagan, Annu. Rev. Mater. Sci., 2000, 30, 545-610,“Synthesis and
    Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal
    Assemblies”
    9. 維基百科,http://en.wikipedia.org/wiki/Nucleation。
    10. Y. W. Jun, J. H. Lee, J. S. Choi, and J. Cheon, J. Phys. Chem. B, 2005 109, 14795-14806,
    “Symmetry-Controlled Nanocrystals:Nonhydrolytic Chemical Synthesis and Shape
    Determining Parameters”
    11. Y. W. Jun, Y. Y. Jung, J. Cheon, J. Am. Chem. Soc, 2002, 124, 615-619,“Architectural
    Control of Magnetic Semiconductor Nanocrystals”

    12. J. Lu, P. Qi, Y. Pemg, Z. Meng, Z. Yand, W. Yu, and Y. Qian, Chem. Mater., 2001, 13,
    2169-2171,“Metastable MnS Crystallites through Solvothermal Synthesis”
    13. O. Zelaya-Angel, J. J. Alvarado-Gil, and R. Lozada-Morales, Appl. Phys. Lett., 1994, 64,
    291-293,“Band-gap shift in CdS semiconductor by photoacoustic spectroscopy:Evidence
    of a cubic to hexagonal lattice tansition”
    14. M. Yin, Y. Gu, I. L. Kuskovsky, T. Andelman, Y. Zhu, G. F. Neumark, S. O'Brien,
    J. Am. Chem. Soc, 2004, 126, 6206-6207,“Zinc Oxide Quantum Rod”
    15. L. S. Li, N. Pradhan, Y. Wang, and X. Peng, Nano. Letters, 2004, 4, 2261-2264,“High
    Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors”
    16. J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, and T. Hyeon, J. Am.
    Chem. Soc., 2003 125, 11100-11105,“Generalized and Facile Synthesis of Semiconductor
    Metal Sulfide Nanoccrystals”
    17 P. D. Cozzole, L. Manna, L. Curri, S. Kudera, C. Giannini, M. Striccoli, and A. Agostiano,
    Chem. Mater, 2005, 17, 1296-1306,“Shape and Phase Control of Colloidal ZnSe
    Nanocrystals”
    18. Y. W. Jun, S. M. Lee, N. J. Kang, and J. Cheon, J. Am. Chem. Soc., 2001, 123, 5150-5151,
    “Control Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant
    System”
    19. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos,
    Nature, 2000, 404, 59-61,“Shape Control of CdSe nanocrystals”
    20. Z. A. Peng, X. Peng, J. Am. Chem. Sci., 2000, 124, 3343-3353,“Nearly Monodisperse and
    Shape-Controlled CdSe Nanocrystals via Alternative Routes:Nucleation and Growth”
    21. L. Qu, Z. A. Peng, and X. Peng, Nano Lett., 2001, 1, 333-337,“Alternative Routes Toward
    High Quality CdSe Nanocrystals”
    22. L. Manna, E. C. Scher, and A. P. Alivisatos, J. Am. Chem Soc., 2000, 122, 12700-12706,
    “Synthesis of Soluble Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe
    Nanocrystals”
    23. Z. A. Peng, and X. Peng, J. Am. Chem. Soc., 2001, 123, 183-184,“Formation of
    High-Quality CdTe, CdSe, and CdS Nanocrystal Using CdO as Precursor ”
    24. T. J. Trentle, T. E. Denler, J. F. Bertone, A. Agrawal, and V. L. Colvin, J. Am. Chem.
    Soc., 1999, 121, 1613-1614,“Synthesis of TiO2 Nanocrystals by Nonhydrolytic
    Solution-Based Reaction”
    25. Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, and A. Paul, J. Am. Chem.
    Soc., 2003, 125, 15981-15985,“Surfactant-Assisted Elimination of a High Energy Facet as
    a Means of Controlling the Shape of TiO2 Nanocrystals”
    26. P, D. Cozzoli, A. Kornowski, and H. Weller, J. Am Chem Soc., 2003, 125, 14539-14548,
    “Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2
    Nanorods”
    27. J. Joo, S. G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon, and T. Hyeon, J. Phys. Chem. B, 2005,
    109, 15297-15302,“Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol-Gel
    Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli”
    28. J. W. Seo, Y. W. Jun, S. J. Ko, and J. Cheon, J. Phys. Chem. B, 2005, 109, 5389-5391,“In
    Situ One-Pot Synthesis of 1-Dimensional Transition Metal Oxide Nanocrystals”
    29. S. L. Brock, S. C. Perera, and K. L. Stamm, Chem. Eur. J, 2004, 10, 3364-3371,“Chemical
    Routes for Production of Transition-Metal Phosphides on the Nanoscale:Implications for
    Advanced Magnetic and Catalytic Materials ”
    30. C. Qian, F. Kim, L. Ma, F. Tsui, P. Yang, and J. Liu, J. Am. Chem. Soc., 2004, 126,
    1195-1198,“Solution-Phase Synthesis of Singal-Crystalline Iron Phosphide
    Nanorods/Nanowires”
    31. J. Park, B. Koo, K. Y. Yoon, Y. Hwand, M. Kang, F. G. Park, and T. Hyeon, J. Am. Chem.
    Soc., 2005, 127, 8433-8440,“Generalized Synthesis of Metal Phosphide Nanorods via
    Thermal Decomposition of Continuously Delivered Metal-Phosphine Complexes Using a
    Syring Pump”
    32. S. M. Lee, Y. W. Jun, S. N. Cho, and J. Cheon, J. Am. Chem. Soc., 2002, 124, 11244-11245,
    “Singal-Crystalline Star-shaped Nanocrystals and Their Evolution:Programming the
    Geometry of Nano-building Blocks”
    33. Z. A. Peng and Z. Peng, J. Am. Chem. Soc., 2001, 123, 1389-1395, Mechanisms of the
    Shape Evolution of CdSe Nanocrystals”
    34. C. Burde, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev., 2005, 105, 1025-1102,
    “Chemistry and Properties of Nanocrystals of Different Shapes”
    35. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, Chem. Rev., 2010, 110,
    389-458,“Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic
    Applications”
    36. R. Boistelle and J. P. Astier, J. Cryst. Growth, 1998, 90, 14-30,“Crystallization Mechanism
    in Solution”
    37. H. O. K. Kirchner, Metall. Trans., 1971, 2, 2861-2864,“Coarsening of Grain-Boundary
    Precipitates”
    38. R. L. Joesten, Rev. Mineral., 1991, 26, 507-582,“Kinetics of Coarsening and
    Diffusion-controlled Mineral Growth”
    39. C. B. Murray and C. R. Kagan, Annu. Rev. Mater. Sci., 2000, 30, 545-610,“Monodisperse
    Nanocrystals and Close-Packed Nanocrystal Assemblies”
    40. J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, ACS Nano, 2008, 2, 2473-2480,“The
    Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications”
    41. J. Zhang, F. Huang, and Z. Lin, Nanoscale, 2010, 2, 18-34,“Progress of Nanocrystalline
    Growth Kinetics Based on Oriented Attachment”
    42. T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, and S. Kitagawa, Angew.
    Chem. Int. Ed., 2009, 48, 4739-4743,“Nanoporous Nanorods Fabricated by Coordination
    Modulation and Oriented Attachment Growth”
    43. K. S. Cho, D. V. Talapin, W. Gaschler, and c. B. Murray, J. Am .Chem. Soc., 2005, 127,
    7140-7147,“Designing PbSe Nanowires and Nanorings through Oriented Attachment Of
    nanoparticles”
    44. 林若璇編撰 (2008) ,氮化鎵基材漏電流行為與材料品質之奈米尺度研究,國立中央
    大學,臺灣。
    45. 劉國雄編撰 (2006),工程材料科學(新版),全華科技圖書股份有限公司,臺灣。
    46. 原著:W. F. Smith,譯者:李春穎等,材料科學與工程,美商麥格羅•希爾國際股份
    有限公司。
    47. 張宏毅編撰 (2005),二氧化鈰奈米粉體之晶型操控-製備、特性分析及氧化催化活
    性, 國立成功大學,臺灣。
    48. J. Feng, J. Han, X. Zhao, J. Feng. et al., 2009, 64, 268-273,“Synthesis of CuInS2 Quantum
    Dots on TiO2 Porous Film by Solvothermal Method for Absorption Later of Solar Cells”
    49. 簡有廷編撰 (2010),I-III-VI族量子點製備與鑑定,國立臺灣科技大學,臺灣。
    50. H. Kissel, U. Muller, C. Walther, and W. T. Masselink, Phys. Rev. B, 2000, 62, 7213-7218,
    “Size Distribution in Self-Assembled InAs Quantum Dots on GaAs (001) for Intermediate
    InAs Coverage”
    51. J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and K. L. Wang, Appl. Phys. Lett., 2001,
    78, 1763-1765,“Band Alignments and Photon-Induced Carrier Transfer from Wetting
    Layers To Ge Islands Growth on Si(001)”
    52. Sze, S. M., Physics of Semiconductor Devices and edition.
    53. 楊德仁編撰 (2008),太陽能電池材料,五南圖書出版公司,臺灣。
    54. 林明獻編撰 (2008),太陽電池技術入門(修訂版),全華圖書股份有限公司,臺灣。
    55. 徐賓鴻編撰 (2008),可撓式CuInSe2薄膜太陽能電池之研製,國立中山大學,臺灣。
    56. G. Dagan, F. Abou-Elfotouh, D. J. Dunlavy, R. J. Matson, and D. Cahen, Chem. Mater.,
    1990, 2, 286-293,“Defect Level Identification in CuInSe2 from Photoluminescence
    Studies”
    57. H. J. Lewerenz, Sol. Energy Mater. Sol. Cells, 2004, 83, 395,“Development of
    Copperindiumdisulfide into a Solar Material”
    58. 吳怡德編撰 (2007),以連續式離子層吸附與反應法製備CuInS2於超薄吸收層太陽能
    電池之應用,國立成功大學,臺灣。
    59. Rockett A. and Birkmire R. W., J. Appl. Phys., 1991, 70, 81。
    60. A. H. Moharram, M. M. Hafiz, A. Salem, Appl. Surf. Sci., 2001, 172, 61-67“Electrical
    Properties and Structural Changes of Thermally Co-evaporated CuInSe Films”
    61. A.H. Moharram, I. M. Al-Mekkawy, A. Salem, Appl. Surf. Sci., 2002, 191, 85-93,“Optical
    Propertis and Structural Changes of Thermally Co-evaporated CuInSe Films”
    62. M Gossla, Th. Hahn, H. Metzner, J. Conrad, U. Geyer, Thin Solid Films, 1995, 268, 39-44,
    “The CuInS2 Films by Three-Source Molecular Beam Deposition”
    63. F. Kang, J. Ao, G. Sun, Q. He, Y. Sun, J. am. ceram. soc., 2009, 478, 125-127,“Stuucture
    and Photovoltaic Characteristics of CuInSe2 Thin Films Prepared by Pulse-Reverse
    Electrodeposition and Selenization Process”
    64. M. Kealin, H. Zogg, N. Tiwari, O. Wilhelm, S. E. Pratsinis, T. Meyer and A. Meyer, Thin
    Solid Films, 2004, 457, 391-396“Electrosprayed and Selenized Cu/In Metal Particles
    Films”
    65. M. Abaab, M. Kanzari, B. Rezig and M. Brunel,Solar Energy Materials & Solar Cells,
    1999, 59, 2999-307“Structural and Optical Properties of Sulfur-Annealed CuInS2 Thin
    Films”
    66. Y. B. He, A. Polity, H. R. Alves, I. Osterreicher, W. Kriegseis, D. Pfisterer, B. K. Meyer and
    M. Hardt, Thin Solid Films, 2002, 403-404, 62-65,“Structure and Optical Characterization
    of RF Reactively Sputtered CuInS2 Thin Films”
    67. Q. Cuo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and
    H. W. Hillhouse, Nano Lett., 2008, 8, 2982-2987“Development of CuInSe2 Nanocrystal
    and Nanoring Lnks for Low-Cost Solar Cells”。
    68. P. M. Allen and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130, 9240-9241,“Ternary
    I-III-VI Quantum Dots Luminescent in the Red to Near-Infrared”。
    69. M. E. Norako and R. L. Brutchey, Chem. Mater., 2010, 22, 1613-1615,“Synthesis of
    Metastable Wurtzite CuInSe2 Nanocrystals”。
    70. M. Kruszynska, H. Borchert, J. Parisi, and J. Kolny-Olesiak, J. Am. Chem. Soc., 2010, 132,
    15976-15986,“Synthesis and Shape Control of CuInS2 Nanoparticles”。
    71. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidthe, L. Dunn, A. Dodabalapur, P.
    F. Barbara, and B. A. Korgel, J. Am. Che,. Soc., 2008, 130, 16770-16777,“Synthesis of
    CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks”for Printable
    Photovoltaics”。
    72. J. J. Wang, Y. Q. Wang, F. F. Cao, Y. G. Guo, and L. J. Wan, J. Am. Chem. Soc., 2010, 132,
    12218-12221,“Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and
    Theis Application in High-Performance Organic-Inorganic Hybrid Photodetectors”。
    73. B. Koo, R. N. Patel, and B. A. Korgel, Chem. Mater., 2009, 21, 1962-1966“Wurtzite -
    Chalcopyrite Polytypism in CuInS2 Nanodisks”。
    74. 蔡進譯編撰 (2005),物理雙月刊,2005,二十七卷五期,701-719,“超高效率太陽
    電池-從愛因斯坦的光電效應談起”。
    75. L. Li, N. Coates, and D. Moses, J. Am. Chem. Soc., 2010, 132, 22-23,“Solution-Processed
    Inorganic Solar Cell Based on in Situ Synthesis and Film Deposition of CuInS2
    Nanocrystals ”。
    76. 顏瑞成編撰 (2008),氮化鎵基材電晶體製作與分析,國立中央大學,臺灣。
    77. P. Reiss, M. Protiere, and L. Li, small, 2009, 2, 154-168“Core/Shell Semiconductor
    Nanocrystals”。
    78. J. Xu, C. Y. Luan, Y. B. Tang, X. Chen, J. A. Japien, W. J. Zhang, H. L. Kwong, X. M.
    Meng, S. T. Lee, and C. S. Lee, ACS Nano, 2010, 4, 6064-6070,“Low-Temperature
    Synthesis of CuInSe2 Nanotube Array on Conducting Class Substrate for Solar Cell
    Application”。
    79. M. Y. Chiang, S. H. Chang, C. Y. Chen, F. W. Yuan, and H. Y. Tuan, J. Phys. Chem. C,
    2011, 115, 1592-1599,“Quaternary CuIn(S1-xSex)2 Nanocrystals:Facile Heating-Up
    Synthesis, Band Gap Tuning, and Gram-Scale Production”。
    80. 戴祺緯編撰 (2007),以不同有機金屬前趨物(C6H7)(C8H12)Ir及(C5H7O2)(C8H12)Ir
    成長二氧化銥一為奈米晶體之研究,臺灣科技大學,臺灣。
    81. L. R. Penn and J. F. Banfield, Science, 1998, 281, 969,“Imperfect Oriented Attachment:
    Dislocation Generation in Defect-free Nanocrystal”
    82. C. Pacholski, A. Kornowski and H. Weller, Angew Chem. Int. Ed., 2002, 41, 1188,
    “Self-assembly of ZnO:From Nanodots to Nanorods ”
    83. Y. Xiong, J. Zhang, F. Huang, G. Ren, W. Liu, D. Li, C. Wang and Z. Lin, J. Phys. Chem. C,
    2008, 112, 9229,“Growth and Phase-transformation Mechanism of Nanocrystalline CdS in
    Na2S Solution”
    84. N. Pradhan, H. Xu and X. Peng, Nano Lett., 2006, 6, 720,“Colloidal CdSe Quantum Wires
    by Oriented Attachment”
    85. K. -T. Young, Y. Sahoo, H. Zeng, M. T. Swihart, J. R. Minter and P. N. Prasad, Chem.
    Mater., 2007, 19, 4108,“”“Formation of ZnTe Nanowires by Oriented Attachment”
    86. A. Narayanaswamy, U. F. Xu, N. Pradhan, M. Kim and X. G. Peng, Angew. Chem. Int. Ed.,
    2006, 45, 5361,“Crystalline Nanoflowers with Different Chemical Compositions and
    Physical Properties Grown by Limited Ligand Protection”
    87. A. Narayanaswamy, U. F. Xu, N. Pradhan, M. Kim and X. G. Peng, J. Am. Chem.
    Soc.,2006.128,10310,“Formation of Nearly Monodisperse In2O3 Nanodots and
    Oriented-attached Nanoflowers:Hydrolysis and Alcoholysis vs Prolysis”
    88. B. Li, Y. Xie, J. Huang and Y. Qian, Adv. Mater.,1999, 11, 1456,“Synthesis by a
    Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticle”
    89. S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, Chem. Mater.,
    2003, 15, 3142,“Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via
    Low-temperature Prolysis of Moleccular Single-Source Precursors”
    90. J. Tang, S. Hinds, S. O. Kelley and E. H. Sargent, Chem. Mater., 2008, 20, 6906,
    “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles”
    91. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P.
    F. Barbara and B. A. Korgel, J. Am. Chem. Soc., 2008, 130, 16770,“Synthesis of CuInS2,
    CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal"Inks" for Printable Photovoltaics”
    92. P. M. Allen and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130, 9240,“Ternary I-III-VI
    Quantum Dots Luminescent in the Red to Near-infrared”
    93. K. Nose, T. Omata and S. O. -Y. Matsuo, J. Phys. Chem. C, 2009, 113, 3455,“Colloidal
    Synthesis of Ternary Copper Indium Diselenide Quantum Dots and Their Optical
    Properties”
    94. M. E. Norako and R. L. Brutchey, Chem. Mater., 2010, 22, 1613,“Synthesis of Metastable
    Wurtzite CuInSe2 Nanocrystals”
    95. B. Koo, R. N. Patel and B. A. Korgel, J. Am. Chem. Soc., 2009, 131, 3134,“Synthesis of
    CuInSe2 Nanocrystals with Trigonal Pyramidal Shape”
    96. Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal and
    H. W. Hillhouse, Nano Lett., 2008, 8, 2982,“Development of CuInSe2 Nanocrystal and
    Nanoring Inks for Low-Cost Solar Cells”
    97. H. Peng, C. Xie, D. T. Schoen, K. Mcllwrath, X. F. Zhang and Y. Cui, Nano. Lett., 2007, 7,
    3734,“Ordered Vacancy Compounds and Nanotube Formation in CuInSe2-CdS Core-shell
    Nanowires”
    98. H. Peng, D. T. Schoen, S. Meister, X. F. Zhang and Y. Cui, J. Am. Chem. Soc., 2007, 129,
    34,“Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires”
    99. A. J. Wooten, D. J. Werder, D. K. Williams, J. L. Casson and J. A. Hollingsworth, J. Am.
    Soc. Chem., 2009, 131, 16177,“Solution-liquid-solid Growth of Ternary Cu-In-Se
    Semiconductor Nanowires from Multiple-and Single-Source Precursors”
    100. D. T. Schoen, H. Peng and Y. Cui, J. Am. Chem. Soc., 2009, 131, 7973,“Anisotropy of
    Chemical Transfomation from In2Se3 to CuInSe2 nanowires through Solid State Reation”
    101. J. Xu, C. -S. Lee, Y. -B. Tang, X. Chen, Z. -H. Chen, W. -J. Zhang, S. -T. Lee, W. Zhang
    and Z. Yang, ACS Nano, 2010, 4, 1845,“Large-scale Synthesis and Phase Transformation
    of CuSe, CuInSe2, and CuInSe2/CuInS2 Core/ Shell Nanowires Bundles”
    102. J. Xu, c. -Y. Luan, Y. -B. Tang, X. Chen, J. A. Zapien, W. -J. Zhang, H. -L. Kwong, X. -M.
    Meng, S. -T. Lee and C. -S. Lee, ACS Nano., 2010, 4, 6064,“Low-temperature Synthesis
    of CuInSe2 Nanotube Array on Conducting Glass Substrate for Solar Cell Application”
    103. L. Li, A. Pandey, D. J. Werder, B. P. Khanal, J. M. Pietryga and V. I. Klimov, J. Am.
    Chem. Soc., 2011, 133, 1176,“Efficient Synthesis of highly Luminescent Copper Indium
    Sulfide- based Core/ Shell Nanocrystals with Surprisingly Long-Lived Emission”

    無法下載圖示 全文公開日期 2016/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE