簡易檢索 / 詳目顯示

研究生: 姚廷穎
Ting-Ying Yao
論文名稱: 不同養護環境下含低溫煆燒稻殼灰無機聚合物漿體之抗壓強度與體積穩定性研究
Study on Compressive Strength and Volume Stability of Geopolymer Prepared by Rice Husk Ash Calcined at Low Temperature and Cured in Various Environments
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
Ta-Peng Chang
鄭安
An Cheng
黃中和
Chung-Ho Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 156
中文關鍵詞: 低溫煆燒稻殼灰無機聚合物力學性質耐久性質
外文關鍵詞: low-temperature calcination, rice husk ash, geopolymer, mechanical properties, shrinkage
相關次數: 點閱:421下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無機聚合物是一種將鹼性溶液與含高矽、鋁或鈣材料混合後,經過溶解與聚合反應所形成的一種無水泥膠結材料,然而其往往早期放熱高、乾縮劇烈、晚期強度下降。有鑑於此,本研究嘗試使用400°C煆燒之稻殼灰以體積部分取代爐石粉,混合後再與氫氧化鈉溶液和矽酸鈉溶液製成無機聚合物,期望改善無機聚合物之力學性質與耐久性質,同時也期望解決部分稻殼棄置的問題,進一步提升稻殼灰的應用價值。本研究也探討配比變化與養護環境對其力學性質的影響。試驗結果發現,使用不同氫氧化鈉(濃度5M)與水玻璃(模數:3)體積比例的鹼激發劑影響抗壓強度,其中以兩者比例1:1在空氣養護時可達到最高7天強度83 MPa。以稻殼灰部分取代爐石粉時,含稻殼灰10%之試體28天抗壓強度甚至比控制組高,達105 MPa,但含20%之試體抗壓強度明顯較低,僅71 MPa,兩者皆具較高的乾縮量。相對而言,於濕氣養護環境時,則抗壓強度較低,僅35 MPa。綜上所述,建議可使用稻殼灰取代量10%、氫氧化鈉:水玻璃=1:1之配比,於空氣養護下可得最高28天抗壓強度且長期並未降低。


Geopolymer is a material, produced by the geopolymeriziation of the mixture of the raw materials with high silica, alumina, and calcium contents and the alkali solution in the absence of the Porland cement. However, it has deficiencies, including the high heat release at eary age, high shrinkage, and high strength reduction. In view of these issues, in this study, the geopolymer was produced by replacing some portion of the slag by the rice husk ash (RHA) calcined at 400 °C by volume, mixing the slag-RHA mixture by the solution of the 5M sodium hydroxide (NaOH) and the water glass (WG) with modulus of 3 at different volume ratios, and curing the specimens in various enviroments. The phycial and chemical properties of the RHA changed by the compositions and curing enviroments were discussed. It is hoped to improve the mechanical properties and shrinkage of the geopolymer and increase the practical application values of the waste rice husks. Results showed that both the ratio of the sodium hydroxide to the water glass and curing condition influenced the compressive strengths. The optiumum ratio was found at 1:1 and the 7-day strength was 83 MPa at the highest by air curing. By replacing portion of the slag with the RHA, in air-cured environment for 28 days, the mix with 10% RHA had compressive strength of 105 MPa, even higher than the plain, and the one with 20% RHA had lower compressive strength of 71 MPa. Both mixes had high shrinkage. On the other hand, the mixes cured in moisture had low compressive strength of 35 MPa only. In summary, the mix with 10%RHA and NaOH:WG=1:1 and air-curing is recommended since it had the highest 28-day strength and sustainable long-term strength.

摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法與流程 2 第二章 文獻回顧 5 2.1 稻殼灰 5 2.1.1 稻殼灰之基本特性 5 2.1.2 稻殼灰之物理性質 6 2.1.3 稻殼灰之化學性質 7 2.1.4 添加稻殼灰對混凝土之影響 7 2.2 爐石粉 7 2.2.1 爐石之物理性質 8 2.2.2 爐石之化學性質 8 2.3 無機聚合物 9 2.3.1 無機聚合物的發展 9 2.3.2 無機聚合物反應機理 10 2.3.3 無機聚合物微觀結構型態 11 2.3.4 影響物化性質之因素 12 2.3.5 含爐石之無機聚合物 15 2.3.6 含稻殼灰之無機聚合物 15 2.3.7 無機聚合物之特性與實務應用 16 第三章 試驗規劃 31 3.1 試驗內容及變數 31 3.1.1 變數說明 31 3.1.2 編碼說明 31 3.2 試驗材料與設備 33 3.2.1 試驗材料 33 3.2.2 試驗設備 34 3.3 配比設計 37 3.4 試驗項目 38 3.4.1物理性質試驗 38 3.4.2 力學性質試驗 39 3.4.3 乾縮性質試驗 40 3.4.4 水中膨脹試驗 40 3.4.5 碳化收縮性質試驗 42 3.4.6 微觀結果分析試驗 42 3.4.7 稻殼灰無機聚合物 43 第四章 試驗結果與討論 67 4.1 先期試驗 67 4.1.1 稻殼灰煆燒時間測定 67 4.1.2 鹼激發劑混合比例 67 4.2 力學試驗 68 4.2.1 空氣養護 69 4.2.2 濕氣養護 71 4.2.3 水中養護 74 4.2.4稻殼灰完全取代 76 4.3耐久試驗 77 4.3.1 乾縮試驗 77 4.3.2 水中膨脹試驗 79 4.3.3 碳化收縮試驗 80 4.4微觀分析 82 4.4.1 X光繞射試驗分析 82 4.4.2 掃描式電子顯微鏡分析 83 4.5綜合討論 84 4.6成本分析 86 第五章 結論與建議 129 5.1 結論 129 5.2 建議 130 參考文獻 131 附錄 138

[1] Adesina, P. A.,Olutoge, F. A. (2019). "Structural properties of sustainable concrete developed using rice husk ash and hydrated lime." Journal of Building Engineering 25: 100804.

[2] Aliabdo, A. A., Abd Elmoaty, A. E. M.,Emam, M. A. (2019). "Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete." Construction and Building Materials 197: 339-355.

[3] Antiohos, S. K., Papadakis, V. G.,Tsimas, S. (2014). "Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness." Cement and Concrete Research 61-62: 20-27.

[4] ASTM C39/C39M-14 (2014). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken,PA, ASTM International.

[5] ASTM C305-06 (2009). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. West Conshohocken,PA, ASTM International.

[6] Bakharev, T., Sanjayan, J. G.,Cheng, Y. B. (1999). "Alkali activation of Australian slag cements." Cement and Concrete Research 29(1): 113-120.

[7] Bakharev, T., Sanjayan, J. G.,Cheng, Y. B. (1999). "Effect of elevated temperature curing on properties of alkali-activated slag concrete." Cement and Concrete Research 29(10): 1619-1625.

[8] Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M.,Monzó, J. (2014). "Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders." Materials Letters 115: 72-74.

[9] Cheng, T. W. ,Chiu, J. P. (2003). "Fire-resistant geopolymer produced by granulated blast furnace slag." Minerals Engineering 16(3): 205-210.

[10] Chi, M. (2015). "Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars." Construction and Building Materials 99: 128-136.

[11] CNS 10896 (2009). 卜特蘭水泥混凝土用飛灰或天然卜作嵐礦物攙料之取樣及檢驗法. 經濟部標準檢驗局, 中華民國國家標準.

[12] CNS 12549 (2014). 混凝土及水泥砂漿用水淬高爐爐碴粉. 經濟部標準檢驗局, 中華民國國家標準.

[13] Davidovits, J. (2008). Geopolymer Chemistry & Application. France, Institut Géopolymère.23

[14] Davidovits, J., James, C.,Davidovits, R. (1999). Chemistry of geopolymer systems terminology. Proceedings Of Geopolymer 99 Second International Conference, Institut Geopolymere, Saint-Quentin, France.9-40

[15] Deb, P. S., Nath, P.,Sarker, P. K. (2015). "Drying Shrinkage of Slag Blended Fly Ash Geopolymer Concrete Cured at Room Temperature." Procedia Engineering 125: 594-600.

[16] Duxson, P., Provis, J. L., Lukey, G. C.,van Deventer, J. S. J. (2007). "The role of inorganic polymer technology in the development of ‘green concrete’." Cement and Concrete Research 37(12): 1590-1597.

[17] Gebregziabiher, B. S., Thomas, R. J.,Peethamparan, S. (2016). "Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders." Construction and Building Materials 113: 783-793.

[18] Haha, M. B., Lothenbach, B., Le Saout, G.,Winnefeld, F. (2011). "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO." Cement and Concrete Research 41(9): 955-963.

[19] He, J., Jie, Y., Zhang, J., Yu, Y.,Zhang, G. (2013). "Synthesis and characterization of red mud and rice husk ash-based geopolymer composites." Cement and Concrete Composites 37: 108-118.

[20] Hwang, C.-L. ,Huynh, T.-P. (2015). "Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers." Construction and Building Materials 101: 1-9.

[21] Hwang, C. L.,Wu, D. S. (1989). "Properties of Cement Paste Containing Rice Husk Ash." Special Publication 114: 733-762.

[22] Ismail, M. S., Waliuddin, A.M., (1996). "Effect of rice husk ash on high strength concrete." Construction and Building Materials 10: 521-526.

[23] JIS A6206 (2013). Ground granulated blast-furnace slag for concrete, 日本工業標準.

[24] Komnitsas, K., Zaharaki, D.,Perdikatsis, V. (2009). "Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers." Journal of Hazardous Materials 161(2): 760-768.

[25] Li, C., Sun, H.,Li, L. (2010). "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements." Cement and Concrete Research 40(9): 1341-1349.

[26] Madandoust, R., Ranjbar, M. M., Moghadam, H. A.,Mousavi, S. Y. (2011). "Mechanical properties and durability assessment of rice husk ash concrete." Biosystems Engineering 110(2): 144-152.

[27] Maragkos, I., Giannopoulou, I. P.,Panias, D. (2009). "Synthesis of ferronickel slag-based geopolymers." Minerals Engineering 22(2): 196-203.

[28] Mehta, P. K. (1978). "Siliceous ashes and hydraulic cements prepared therefrom." United States Patent: 4105459.

[29] Moayedi, H., Aghel, B., Abdullahi, M. a. M., Nguyen, H.,Safuan A Rashid, A. (2019). "Applications of rice husk ash as green and sustainable biomass." Journal of Cleaner Production 237: 117851.

[30] Mosaberpanah, M. A.,Umar, S. A. (2019). "Using rice husk ash as supplement to cementitious materials on performance of ultrahigh-performance concrete: a review." Materials Today Sustainability: 100030.

[31] Muthukrishnan, S., Gupta, S.,Kua, H. W. (2019). "Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar." Theoretical and Applied Fracture Mechanics 104: 102376.

[32] N. Maeda, I. W. M. K. T. U.,Pushpalal, G. K. D. (2001). "Development of a New Furnace for the Production of Rice Husk Ash." Special Publication 199.835-852

[33] Nair, D. G., Fraaij, A., Klaassen, A. A. K.,Kentgens, A. P. M. (2008). "A structural investigation relating to the pozzolanic activity of rice husk ashes." Cement and Concrete Research 38(6): 861-869.

[34] Nehdi, M., Duquette, J.,El Damatty, A. (2003). "Performance of rice husk ash produced using a new technology as a mineral admixture in concrete." Cement and Concrete Research 33(8): 1203-1210.

[35] Onojah, A. D., Agbendeh, N. A.,Mbakaan, C. (2013). "Rice husk ash refractory: the temperatura dependent crystalline phase aspects " International Journal of Research and Reviews in Applied Sciences 15(2): 12.

[36] Palomo, M. W. G. A.,Blanco, M. T. (1999). "Alkali-activated fly ashes: A cement for the future." Cement and Concrete Research 29(8): 1323-1329.

[37] Phair, J. W., Smith, J. D.,Van Deventer, J. S. J. (2003). "Characteristics of aluminosilicate hydrogels related to commercial “Geopolymers”." Materials Letters 57(28): 4356-4367.

[38] Phair, J. W.,Van Deventer, J. S. J. (2002). "Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers." International Journal of Mineral Processing 66(1): 121-143.

[39] Purdon, A. O. (1940). "The action of alkali on the blast furnace slag." Journal Of The Society Of Chemical Industry 59(5): 191-202.

[40] Rêgo, J., A. Nepomuceno, A., P. Figueiredo, E., P. Hasparyk, N.,D. Borges, L. (2014). Effect of Particle Size of Residual Rice-Husk Ash in Consumption of Ca(OH)2.27(6):04014178

[41] Shi, C.,Day, R. L. (1995). "A calorimetric study of early hydration of alkali-slag cements." Cement and Concrete Research 25(6): 1333-1346.

[42] Shi, C.,Day, R. L. (1996). "Some factors affecting early hydration of alkali-slag cements." Cement and Concrete Research 26(3): 439-447.

[43] Shi, Z., Shi, C., Wan, S., Li, N.,Zhang, Z. (2018). "Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars." Cement and Concrete Research 113: 55-64.

[44] Sturm, P., Gluth, G. J. G., Brouwers, H. J. H.,Kühne, H. C. (2016). "Synthesizing one-part geopolymers from rice husk ash." Construction and Building Materials 124: 961-966.

[45] Swanepoel, J. C.,Strydom, C. A. (2002). "Utilisation of fly ash in a geopolymeric material." Applied Geochemistry 17(8): 1143-1148.

[46] Tchakouté, H. K., Rüscher, C. H., Kong, S., Kamseu, E.,Leonelli, C. (2016). "Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study." Construction and Building Materials 114: 276-289.

[47] Van Jaarsveld, J. G. S., Van Deventer, J. S. J.,Lorenzen, L. (1997). "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications." Minerals Engineering 10(7): 659-669.

[48] Vigneshwari, M., Arunachalam, K.,Angayarkanni, A. (2018). "Replacement of silica fume with thermally treated rice husk ash in Reactive Powder Concrete." Journal of Cleaner Production 188: 264-277.

[49] Wang, S. D.,Scrivener, K. L. (1995). "Hydration products of alkali activated slag cement." Cement and Concrete Research 25(3): 561-571.

[50] Wang, W. H., Meng, Y. F.,Wang, D. Z. (2017). "Effect of rice husk ash on high-temperature mechanical properties and microstructure of concrete." Chemists and Chemical Engineers 66(3-4): 157-164.

[51] Wu, C.-L. H. D.-S. (1989). "Properties of Cement Paste Containing Rice Husk Ash."114(35): 733-762

[52] Xu, H.,Van Deventer, J. S. J. (2000). "The geopolymerisation of alumino-silicate minerals." International Journal Minerals Process 59(3): 247-266.

[53] Xu, H., Van Deventer, J. S. J.,Lukey, G. C. (2001). "Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures." Industrial Engineering Chemical Research 40(17): 3749-3756.

[54] Xu, Z.,Zhou Huanhai, W. X. (1993). "Kinetic study on hydration of alkali-activated slag." Cement and Concrete Research 23(6): 1253-1258.

[55] Ye, H.,Radlińska, A. (2016). "Shrinkage mechanisms of alkali-activated slag." Cement and Concrete Research 88: 126-135.

[56] Zabihi, S. M.,Tavakoli, H. R. (2019). "Evaluation of monomer ratio on performance of GGBFS-RHA alkali-activated concretes." Construction and Building Materials 208: 326-332.

[57] Zain, M. F. M., Islam, M. N., Mahmud, F.,Jamil, M. (2011). "Production of rice husk ash for use in concrete as a supplementary cementitious material." Construction and Building Materials 25(2): 798-805.

[58] Zhang, C.-Y., Han, R., Yu, B.,Wei, Y.-M. (2018). "Accounting process-related CO2 emissions from global cement production under Shared Socioeconomic Pathways." Journal of Cleaner Production 184: 451-465.

[59] 代新祥,文梓芸 (2001). 土壤聚合物水泥. 新型建築材料. 北京. 6: 34-35.

[60] 刘德昌 (1999). 流化床燃烧技术的工程应用. 北京, 中国电力出版社

[61] 周楚洋 (2012). 國內生質燃料的料源調查與應用評估計畫. 台北市, 行政院環境保護署環境檢驗所委託之專題研究成果報告.

[62] 高庭芳、蘇宗振 (2014). "革新稻米產業發展策略." 農政與農情 270.

[63] 張鈞浩 (2018). 含低溫煆燒稻殼灰無機聚合物漿體之力學與乾縮性質. 營建工程研究所, 國立台灣科技大學. 碩士論文.

[64] 陳冠宇 (2010). 鹼激發爐石基膠體配比因子對其工程性質影響之研究. 營建工程研究所, 國立台灣科技大學. 碩士論文.

[65] 陳姵華 (2017). 含低溫鍛燒稻殼灰漿體之力學與耐久性質. 營建工程研究所, 國立台灣科技大學. 碩士論文.

[66] 黃兆龍 (2007). 卜作嵐混凝土使用手冊. 台北市, 財團法人中興工程顧問社.

[67] 黃兆龍 (2007). 混凝土性質與行為. 台北市, 詹氏書局.

無法下載圖示 全文公開日期 2025/08/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE