簡易檢索 / 詳目顯示

研究生: 謝承穎
CHENG-YING XIE
論文名稱: 田口方法應用於TiO2/CeO2/SS316電極之光電芬頓系統特性探討
Application of Taguchi Method to optimize the parameter of composite TiO2/CeO2/SS316 electrode in Photo-Electric-Fenton system
指導教授: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
口試委員: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 光電芬頓光催化田口方法二氧化鈦二氧化鈰
外文關鍵詞: Photo-Electric-Fenton, Photocatalysis, Taguchi Method, Titanium dioxide, Cerium oxide
相關次數: 點閱:375下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電芬頓法是藉由光能及電能使系統反應時產生活性極強的氫氧自由基,進而對系統產生氧化還原反應操作之處理程序。而陰極電極對光電芬頓系統性能具相當之影響性,本研究使用具有良好加工性與高導電性能之SS316L不銹鋼為電極基材,並以具無毒、成本低、高化學穩定性及高氧化能力之二氧化鈦及具備化學穩定性及抗腐蝕性之二氧化鈰進行基材表面修飾。實驗過程藉由田口方法進行陰極極板製備參數最佳化,並觀察系統電化學特性與電芬頓系統對羅丹明B (Rhodamine, RhB)染料降解之效能。
    實驗包含(1)紫外/可見光分光光度計分析電極吸收光譜及能帶間隙;(2)掃描式電子顯微鏡觀察電極表面織構及表面孔隙率;(3)接觸角量測分析儀量測電極表面親水性;(4) X光繞射儀分析二氧化鈰及二氧化鈦粉體結晶相;(5)動電位極化曲線分析電極抗腐蝕性;(6)光電芬頓及光催化系統降解RhB染料脫色效率。
    結果顯示,3TiO2:1CeO2/SS316L-450℃擁有最佳光吸收波長380 nm及最低能帶間隙2.85 eV,且具最高表面孔隙率7.30%。3TiO2:1CeO2/SS316L-450 ℃電極經30分鐘光電芬頓系統降解RhB染料脫色率可達88.825%,相較於未經修飾的SS316L不銹鋼電極提升1.78倍。顯示,3TiO2:1CeO2經450℃鍛燒後修飾SS316L不銹鋼電極於光電芬頓系統陰極降解RhB染料廢水之性能具大幅提升,具備未來應用於光電芬頓電極材料之發展價值。


    Photoelectro Fenton method is a process to produce the extremely active hydroxyl radical with light energy and electric energy, and then degrading dye to overall system. Furthermore, the cathode electrode plays an important role in Fenton system. In this study, we used stainless steel, SS316L, which has high processability and high conductivity as the substrate, and executed the surface modification with Titanium dioxide which is non-toxic, inexpensive, highly chemical stable, and has high oxidizing ability, and Cerium oxide which has chemical stability and corrosion resistance. The parameters were prepared by using Taguchi method to optimize the cathode plate, then observing the electrochemical properties of the system and the efficiency of RhB dye degraded with Electro Fenton system.
    The experiment included: (1)UV-VIS for Band gap measurement;(2) SEM for surface morphology observation of electrodes;(3) Contact angle measuring instrument for the hydrophilicity of the surface;(4) XRD for Lattice structure measurement;(5) Dynamic polarization curves for electrode corrosion resistance measurement;(6) Decolorization rate for efficiency in the Photo-Electro-Fenton system.
    The results of this study shows that 3TiO₂:1CeO₂/SS316L-450 ℃ has the maximum light wavelength absorption with 380 nm, 2.85 eV as it’s minimum band gap, and the highest surface porosity, 7.30%. Furthermore, the RhB dye decolorization of 3TiO₂:1CeO₂/SS316L-450 ℃ electrode could be reached to 88.825% after 30 minutes with Photoelectro Fenton system degradation, which was 1.78 times greater than the SS316Lwithout modification. The results indicated that the efficiency of the RhB dye wastewater cathode degradation with SS316L electrode modified with 3TiO₂:1CeO₂/SS316L-450℃ in Photoelectro Fenton system got greatly improved. Therefore, using 3TiO₂:1CeO₂/SS316L-450℃ as electrode matirial possess developmental potential in the application of Photoelectro Fenton system.

    摘要 I Abstract II 謝誌 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 4 2.1 染料廢水特性與其相關探討 4 2.1.1 染料廢水來源 4 2.1.2 人工合成染料分類 5 2.1.3 人工合成染料廢水之危害 7 2.1.4 羅丹明B(Rhodamine B, RhB)染料結構與特性 7 2.2 染料廢水處理程序 8 2.2.1 染料廢水處理程序分類 8 2.2.2 芬頓反應法 9 2.2.3 電芬頓反應法 11 2.2.4 光電芬頓反應法 12 2.2.5 生物電芬頓燃料電池 15 2.2.6 光催化法 15 2.3 二氧化鈦 17 2.4 二氧化鈰 18 2.5 複合光觸媒材料 19 2.6 田口實驗方法 20 2.6.1 影響因子 21 2.6.2 田口直交表 22 2.6.3 田口變異分析 24 2.6.3.1 品質損失 24 2.6.3.1.1望目品質損失 25 2.6.3.1.2望小品質損失 25 2.6.3.1.3望大品質損失 26 2.6.3.2信噪比 26 2.6.3.2.1望目特性信噪比 26 2.6.3.2.2望小特性信噪比 27 2.6.3.2.3望大特性信噪比 27 第三章 實驗方法 28 3.1 研究架構 28 3.2 實驗材料藥品與材料 29 3.3 實驗儀器 29 3.4 光電芬頓降解RhB染料廢水場域建構 31 3.5 光電芬頓最佳工作恆電壓分析 32 3.6 光電芬頓降解染料廢水脫色分析 32 3.7 田口方法設計 34 3.8 電極製備 35 3.9 電極特性分析 38 3.9.1 紫外/可見光分光光譜儀分析(UV-Vis spectrophotometry) 38 3.9.2 掃描式電子顯微鏡分析(Scanning Electron Microscope) 39 3.9.3 接觸角量測儀分析(Contact angle measuring instrument) 39 3.9.4 X光繞射儀分析(X-ray diffraction) 40 3.9.5 動電位極化曲線分析 40 第四章 結果與討論 42 4.1 光電芬頓系統最佳工作恆電壓分析 42 4.2 田口方法參數最佳化分析 43 4.3 電極特性分析 46 4.3.1 紫外/可見光分光光譜儀分析(UV-Vis spectrophotometry) 46 4.3.2 掃描式電子顯微鏡分析(Scanning Electron Microscope) 50 4.3.3 接觸角量測儀分析(Contact angle measuring instrument) 55 4.3.4 X光繞射儀分析(X-ray diffraction) 58 4.3.5 動電位極化曲線分析 60 4.4 光電芬頓降解染料廢水脫色分析 64 第五章 結論 69 參考文獻 71 附錄 76

    [1] M. A. Rauf and S. Salman Ashraf, "Survey of recent trends in biochemically assisted degradation of dyes," Chemical Engineering Journal, vol. 209, pp. 520-530, 2012.
    [2] A. Sharma, J. Ahmad, and S. J. S. Flora, "Application of advanced oxidation processes and toxicity assessment of transformation products," Environmental Research, vol. 167, pp. 223-233, 2018.
    [3] A. Babuponnusami and K. Muthukumar, "Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes," Chemical Engineering Journal, vol. 183, pp. 1-9, 2012.
    [4] X. Liu, Y. Zhou, J. Zhang, L. Luo, Y. Yang, H. Huang, H. Peng, L. Tang, and Y. Mu, "Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps," Chemical Engineering Journal, vol. 347, pp. 379-397, 2018.
    [5] E. Magnone, M.-K. Kim, H. J. Lee, and J. H. Park, "Testing and substantial improvement of TiO2/UV photocatalysts in the degradation of Methylene Blue," Ceramics International, vol. 45, no. 3, pp. 3359-3367, 2019.
    [6] E. Mousset, Z. T. Ko, M. Syafiq, Z. Wang, and O. Lefebvre, "Electrocatalytic activity enhancement of a graphene ink-coated carbon cloth cathode for oxidative treatment," Electrochimica Acta, vol. 222, pp. 1628-1641, 2016.
    [7] W. Zhou, L. Rajic, L. Chen, K. Kou, Y. Ding, X. Meng, Y. Wang, B. Mulaw, J. Gao, Y. Qin, and A. N. Alshawabkeh, "Activated carbon as effective cathode material in iron-free Electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption," Electrochimica Acta, vol. 296, pp. 317-326, 2019.
    [8] O. Carp, C. L. Huisman, and A. Reller, "Photoinduced reactivity of titanium dioxide," Progress in Solid State Chemistry, vol. 32, no. 1, pp. 33-177, 2004.
    [9] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, and D. D. Dionysiou, "A review on the visible light active titanium dioxide photocatalysts for environmental applications," Applied Catalysis B: Environmental, vol. 125, pp. 331-349, 2012.
    [10] E. K. Goharshadi, S. Samiee, and P. Nancarrow, "Fabrication of cerium oxide nanoparticles: Characterization and optical properties," Journal of Colloid and Interface Science, vol. 356, no. 2, pp. 473-480, 2011.
    [11] J. C. Cano-Franco and M. Álvarez-Láinez, "Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 nanoparticles in visible light organic degradation," Materials Science in Semiconductor Processing, vol. 90, pp. 190-197, 2019.
    [12] P. Xu, H. Xu, and D. Zheng, "The efficiency and mechanism in a novel electro-Fenton process assisted by anodic photocatalysis on advanced treatment of coal gasification wastewater," Chemical Engineering Journal, vol. 361, pp. 968-974, 2019.
    [13] 李輝煌, 田口方法-品質設計的原理與實務. 高立圖書有限公司.
    [14] J. Abdi, M. Vossoughi, N. M. Mahmoodi, and I. Alemzadeh, "Synthesis of amine-modified zeolitic imidazolate framework-8, ultrasound-assisted dye removal and modeling," Ultrasonics Sonochemistry, vol. 39, pp. 550-564, 2017.
    [15] T. T. V. Tran, S. R. Kumar, and S. J. Lue, "Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction," Journal of Membrane Science, vol. 575, pp. 38-49, 2019.
    [16] V. Katheresan, J. Kansedo, and S. Y. Lau, "Efficiency of various recent wastewater dye removal methods: A review," Journal of Environmental Chemical Engineering, vol. 6, no. 4, pp. 4676-4697, 2018.
    [17] A. Abel, "24 - The history of dyes and pigments: From natural dyes to high performance pigments," in Colour Design (Second Edition), J. Best, Ed.: Woodhead Publishing, 2012, pp. 557-587.
    [18] V. K. Gupta and Suhas, "Application of low-cost adsorbents for dye removal – A review," Journal of Environmental Management, vol. 90, no. 8, pp. 2313-2342, 2009.
    [19] K. A. Adegoke and O. S. Bello, "Dye sequestration using agricultural wastes as adsorbents," Water Resources and Industry, vol. 12, pp. 8-24, 2015.
    [20] A. Mehrdad and R. Hashemzadeh, "Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide," Ultrasonics Sonochemistry, vol. 17, no. 1, pp. 168-172, 2010.
    [21] N. C. Respicio and J. R. Heitz, "Comparative toxicity of rhodamine B and rhodamine 6G to the house fly (Musca domestica L.)," Bulletin of Environmental Contamination and Toxicology, vol. 27, no. 1, pp. 274-281, 1981.
    [22] J. Wang, M. Gao, T. Shen, M. Yu, Y. Xiang, and J. Liu, "Insights into the efficient adsorption of rhodamine B on tunable organo-vermiculites," Journal of Hazardous Materials, vol. 366, pp. 501-511, 2019.
    [23] R. Ji, Z. Zhao, X. Yu, and M. Chen, "Determination of rhodamine B in capsicol using the first derivative absorption spectrum," Optik, vol. 181, pp. 796-801, 2019.
    [24] M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, and A. Idris, "Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review," Desalination, vol. 280, no. 1, pp. 1-13, 2011.
    [25] M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, "Adsorption of methylene blue on low-cost adsorbents: A review," Journal of Hazardous Materials, vol. 177, no. 1, pp. 70-80, 2010.
    [26] T. Robinson, G. McMullan, R. Marchant, and P. Nigam, "Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative," Bioresource Technology, vol. 77, no. 3, pp. 247-255, 2001.
    [27] N. Manavi, A. S. Kazemi, and B. Bonakdarpour, "The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater," Chemical Engineering Journal, vol. 312, pp. 375-384, 2017.
    [28] H. Zhang, H. J. Choi, and C.-P. Huang, "Optimization of Fenton process for the treatment of landfill leachate," Journal of Hazardous Materials, vol. 125, no. 1, pp. 166-174, 2005.
    [29] Y. Shen, Y. Zhou, Z. Zhang, and K. Xiao, "Cobalt–copper oxalate nanofibers mediated Fenton degradation of Congo red in aqueous solutions," Journal of Industrial and Engineering Chemistry, vol. 52, pp. 153-161, 2017.
    [30] Y. Ou, J. Wu, J. R. Meyer, M. Foston, J. D. Fortner, and W. Li, "Photoenhanced oxidation of nC60 in water: Exploring H2O2 and hydroxyl radical based reactions," Chemical Engineering Journal, vol. 360, pp. 665-672, 2019.
    [31] P. V. Nidheesh, R. Gandhimathi, and N. S. Sanjini, "NaHCO3 enhanced Rhodamine B removal from aqueous solution by graphite–graphite electro Fenton system," Separation and Purification Technology, vol. 132, pp. 568-576, 2014.
    [32] P. V. Nidheesh and R. Gandhimathi, "Trends in electro-Fenton process for water and wastewater treatment: An overview," Desalination, vol. 299, pp. 1-15, 2012.
    [33] M. A. Oturan, "An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D," Journal of Applied Electrochemistry, vol. 30, no. 4, pp. 475-482, 2000.
    [34] V. Kavitha and K. Palanivelu, "Destruction of cresols by Fenton oxidation process," Water Research, vol. 39, no. 13, pp. 3062-3072, 2005.
    [35] A. J. Slate, K. A. Whitehead, D. A. C. Brownson, and C. E. Banks, "Microbial fuel cells: An overview of current technology," Renewable and Sustainable Energy Reviews, vol. 101, pp. 60-81, 2019.
    [36] X. Li, S. Chen, I. Angelidaki, and Y. Zhang, "Bio-electro-Fenton processes for wastewater treatment: Advances and prospects," Chemical Engineering Journal, vol. 354, pp. 492-506, 2018.
    [37] J. Nelson, The physics of solar cells. World Scientific Publishing Company, 2003.
    [38] Y. Liu, D. Bian, Y. Zhao, and Y. Wang, "Anti-corrosion performance of chemically bonded phosphate ceramic coatings reinforced by nano-TiO2," Journal of the Mechanical Behavior of Biomedical Materials, vol. 86, pp. 208-214, 2018.
    [39] C.-F. Liu, C. P. Huang, C.-C. Hu, and C. Huang, "A dual TiO2/Ti-stainless steel anode for the degradation of orange G in a coupling photoelectrochemical and photo-electro-Fenton system," Science of The Total Environment, vol. 659, pp. 221-229, 2019.
    [40] K. Ackland and J. M. D. Coey, "Room temperature magnetism in CeO2—A review," Physics Reports, vol. 746, pp. 1-39, 2018.
    [41] P. Min, S. Zhang, Y. Xu, and R. Li, "Enhanced oxygen storage capacity of CeO2 with doping-induced unstable crystal structure," Applied Surface Science, vol. 448, pp. 435-443, 2018.
    [42] R. Ma, S. Zhang, T. Wen, P. Gu, L. Li, G. Zhao, F. Niu, Q. Huang, Z. Tang, and X. Wang, "A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants," Catalysis Today, 2018.
    [43] H. Abdullah, M. M. R. Khan, H. R. Ong, and Z. Yaakob, "Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview," Journal of CO2 Utilization, vol. 22, pp. 15-32, 2017.
    [44] M.-L. Huang, Y.-H. Hung, and Z.-S. Yang, "Validation of a method using Taguchi, response surface, neural network, and genetic algorithm," Measurement, vol. 94, pp. 284-294, 2016.
    [45] N. S. Sambudi, M. G. Kim, and S. B. Park, "The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate," Materials Science and Engineering: C, vol. 60, pp. 518-525, 2016.
    [46] J. M. Schuster, C. E. Schvezov, and M. R. Rosenberger, "Influence of Experimental Variables on the Measure of Contact Angle in Metals Using the Sessile Drop Method," Procedia Materials Science, vol. 8, pp. 742-751, 2015.
    [47] B. Bouzayani, E. Bocos, S. C. Elaoud, M. Pazos, M. Á. Sanromán, and E. González-Romero, "An effective electroanalytical approach for the monitoring of electroactive dyes and intermediate products formed in electro-Fenton treatment," Journal of Electroanalytical Chemistry, vol. 808, pp. 403-411, 2018.
    [48] L. Rožić, S. Petrović, D. Lončarević, B. Grbić, N. Radić, S. Stojadinović, V. Jović, and J. Lamovec, "Influence of annealing temperature on structural, optical and photocatalytic properties of TiO2-CeO2 nanopowders," Ceramics International, vol. 45, no. 2, Part A, pp. 2361-2367, 2019.
    [49] V. B. Koli and J.-S. Kim, "Photocatalytic oxidation for removal of gases toluene by TiO2-CeO2 nanocomposites under UV light irradiation," Materials Science in Semiconductor Processing, vol. 94, pp. 70-79, 2019.
    [50] C. A. Huerta-Aguilar, V. Palos-Barba, P. Thangarasu, and R. T. Koodali, "Visible light driven photo-degradation of Congo red by TiO2ZnO/Ag: DFT approach on synergetic effect on band gap energy," Chemosphere, vol. 213, pp. 481-497, 2018.
    [51] M. E. Contreras-García, M. L. García-Benjume, V. I. Macías-Andrés, E. Barajas-Ledesma, A. Medina-Flores, and M. I. Espitia-Cabrera, "Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis," Materials Science and Engineering: B, vol. 183, pp. 78-85, 2014.
    [52] L. Jiang, G. Nie, R. Zhu, J. Wang, J. Chen, Y. Mao, Z. Cheng, and W. A. Anderson, "Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts," Journal of Environmental Sciences, vol. 55, pp. 266-273, 2017.
    [53] M. R. Mohammadi and D. J. Fray, "Nanostructured TiO2–CeO2 mixed oxides by an aqueous sol–gel process: Effect of Ce:Ti molar ratio on physical and sensing properties," Sensors and Actuators B: Chemical, vol. 150, no. 2, pp. 631-640, 2010.
    [54] D. Ollis, "Connecting contact angle evolution to photocatalytic kinetics of self cleaning surfaces," Catalysis Today, vol. 310, pp. 49-58, 2018.
    [55] G. Azimi, R. Dhiman, H.-M. Kwon, A. T. Paxson, and K. K. Varanasi, "Hydrophobicity of rare-earth oxide ceramics," Nature Materials, vol. 12, pp. 315-320, 2013.
    [56] M. Fronzi, M. H. N. Assadi, and D. A. H. Hanaor, "Theoretical insights into the hydrophobicity of low index CeO2 surfaces," Applied Surface Science, vol. 478, pp. 68-74, 2019.
    [57] S. Mallick, Z. Ahmad, F. Touati, and R. A. Shakoor, "Improvement of humidity sensing properties of PVDF-TiO2 nanocomposite films using acetone etching," Sensors and Actuators B: Chemical, vol. 288, pp. 408-413, 2019.
    [58] S. Banerjee, D. D. Dionysiou, and S. C. Pillai, "Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis," Applied Catalysis B: Environmental, vol. 176-177, pp. 396-428, 2015.
    [59] M. Y. Rekha, A. Kamboj, and C. Srivastava, "Electrochemical behavior of SnNi-graphene oxide composite coatings," Thin Solid Films, vol. 653, pp. 82-92, 2018.
    [60] D. A. Fischer, I. T. Vargas, G. E. Pizarro, F. Armijo, and M. Walczak, "The effect of scan rate on the precision of determining corrosion current by Tafel extrapolation: A numerical study on the example of pure Cu in chloride containing medium," Electrochimica Acta, vol. 313, pp. 457-467, 2019.
    [61] J. Li, L. Ecco, A. Ahniyaz, and J. Pan, "Probing electrochemical mechanism of polyaniline and CeO2 nanoparticles in alkyd coating with in-situ electrochemical-AFM and IRAS," Progress in Organic Coatings, vol. 132, pp. 399-408, 2019.
    [62] A. Kozlovskiy, I. Shlimas, K. Dukenbayev, and M. Zdorovets, "Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering," Vacuum, vol. 164, pp. 224-232, 2019.
    [63] D. Kallappa and V. T. Venkatarangaiah, "Synthesis of CeO2 doped ZnO nanoparticles and their application in Zn-composite coating on mild steel," Arabian Journal of Chemistry, 2018.
    [64] H. Zhang, Y. Zou, Z. Zou, and C. Shi, "Effects of CeO2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers," Journal of Rare Earths, vol. 32, no. 11, pp. 1095-1100, 2014.
    [65] J. H. Park, W. S. Kim, D.-H. Jo, J. S. Kim, and J. M. Park, "Effect of Ce conversion underlayer coating on the photo-catalytic activity of TiO2 sol–gel film deposited on hot-dip GI," Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 1965-1972, 2014.

    QR CODE