簡易檢索 / 詳目顯示

研究生: 楊正邦
Cheng-pang Yang
論文名稱: 反沖洗廢水處理技術之研究
Treatment Technology of Backwash Water
指導教授: 劉志成
Jhy-chern Liu
口試委員: 黃志彬
Chih-pin Huang
李篤中
Duu-jong Lee
顧洋
Young Ku
王明光
Ming-kuang Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 140
中文關鍵詞: 快濾池反沖洗廢水濁度混凝沉澱模型廠廢水回收
外文關鍵詞: rapid sand filter, Backwash water, pilot plant, coagulation-flocculation, wastewater reuse, turbidity
相關次數: 點閱:173下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討以混凝-沉澱及模型廠操作對淨水廠快濾池反沖洗廢水(Backwash water)處理之影響。研究內容包括對淨水廠快濾池反沖洗廢水特性進行瞭解,以單獨鋁鹽混凝劑、多元氯化鋁搭配高分子絮凝劑混凝沉澱處理;以模型廠(Pilot-plant)評估反沖洗廢水回流之效果。
    測試結果顯示反沖洗廢水中懸浮固體沉降性良好,使用多元氯化鋁及明礬為混凝劑進行瓶杯試驗,則可以獲得更佳之濁度去除效率,其中又以多元氯化鋁混凝劑的效果較好。採用多元氯化鋁與高分子絮凝劑搭配混凝,亦可加強對反沖洗廢水中濁度的去除,並可降低混凝劑的使用量;對於所使用之高分子絮凝劑,以幾丁聚醣(Chitosan)搭配多元氯化鋁的效果較為顯著。
    在反沖洗廢水回流評估中,首先我們以配置固定比例之混合水透過瓶杯試驗研究,結果顯示回流並未明顯影響濁度去除效率;此外,由長興及雙溪模型廠實驗的結果顯示,我們亦驗證回流反沖洗廢水並未造成整體處理程序之負面衝擊。


    The objective of this study was to investigate the treatment and recycle of the backwash water. The coagulation efficiency of backwash water resulting from Chang-Hsing and Swan-Sea were compared. The characteristics of backwash water of Chang-Hsing Water Treatment Plant varied considerably among samples taken at different times, while those of Swan-Sea did not. The use of polyaluminum chloride(PACl)and alum both could yield satisfactory turbidity removal. The addition of polymers, such as chitosan and Cat-Floc reduced the dosage of PACl required to achieve effective coagulation-flocculation.
    In study of backwash water mixed with raw water by certain ratio through jat test. Results revealed that backwash water recycling did not deteriorate the treated water quality.
    In pilot study in Chang-Hsing Water Treatment Plant, two recycling mode were selected: intermittent recycling mode(10 min for each hour)at a ratio of 1:7, and the continuous recycling mode at a ratio of 1:42. Results showed that the intermittent recycling mode had less chance to affect the effluent quality than the continuous recycling mode. In addition, two important parameters were studied, namely: backwash water recycle ratio(4, 6 and 8%), and backwash water type(direct recycle, 3-min pre-sedimentation, and 10-min pre-sedimentation)in pilot study of Swan-Sea.

    目 錄 摘要…………….…………………………………………………….......I Abstract……………….……………………………………………….…II 致謝…………….…………………………………………………….....III 目錄…………….…………………………………………………..... ...IV 圖目錄………….……………………………………….……...........…VII 表目錄………………………………………………….……………….XI 第一章 緒 論 1 1.1.1 研究缘起 1 1.1.2 研究目的 1 第二章 理論基礎與文獻回顧 3 2.1 反沖洗廢水…………………… …………………………3 2.1.1 反沖洗廢水來源 3 2.1.2 反沖洗廢水現狀 3 2.1.3 反沖洗廢水特性與重要性 5 2.2 預沉澱及直接回流 6 2.2.1 預沉澱 6 2.2.2 直接回流方式 6 2.3 化學混凝沉澱 8 2.3.1 混凝作用 8 2.3.2 高分子絮凝劑 9 2.3.3 反沖洗廢水之混凝處理 11 2.4 薄膜處理 12 2.5 溶解空氣浮除 14 第三章 實驗設備與方法 15 3.1 實驗水樣…………………… …………………………15 3.1.1 長興淨水場快濾池反沖洗廢水 15 3.1.2 雙溪淨水場快濾池反沖洗廢水 16 3.1.3 模型廠水樣來源 19 3.2 實驗藥品 19 3.3 實驗設備與裝置 21 3.3.1 長興模型廠裝置 22 3.3.2 雙溪模型廠裝置 25 3.4 實驗項目與步驟 28 3.4.1 反沖洗廢水水樣基本性質分析 28 3.4.2 混凝-沉澱實驗 28 3.4.3 模型廠實驗 29 3.4.3.1 長興模型廠 29 3.4.3.2 雙溪模型廠 30 3.5 反沖洗廢水特性分析方法 31 3.5.1 總固體濃度分析 31 3.5.2 總懸浮固體濃度分析 32 3.5.3 總固定固體濃度分析 33 3.5.4 總溶解性固體及總揮發性固體濃度分析 33 3.5.5 .UV-VIS光譜分析 34 3.5.6 粒徑分佈分析 34 3.5.7 總溶解有機碳分析 35 3.5.8 .水中鹼度檢測方法-滴定法 36 3.5.9 溶解性化學需氧量測定 36 3.6 其他試驗分析 37 3.6.1 殘餘濁度分析 37 3.6.2 界達電位分析 38 3.6.3 碎形維度 38 第四章 實驗結果與討論 39 4.1 反沖洗廢水基本性質探討 40 4.1.1 長興場反沖洗廢水 40 4.1.2 雙溪場反沖洗廢水 46 4.2 混凝-沉澱試驗 51 4.2.1 長興反沖洗廢水加藥混凝 51 4.2.2 雙溪反沖洗廢水加藥混凝 64 4.3 反沖洗廢水與原水混合之回流模擬試驗 75 4.3.1 長興反沖洗廢水與原水混合 75 4.3.1.1 混凝沉澱 76 4.3.1.2 膠羽粒徑與碎形維度 81 4.3.2 雙溪反沖洗廢水與原水混合 85 4.4 模型廠操作實驗 93 4.4.1長興模型廠 93 4.4.1.1 連續式一階段加藥程序 93 4.4.1.2 長興反沖洗廢水回流程序 96 4.4.2 雙溪模型廠 106 4.4.2.1 雙溪模型廠回流程序 106 4.4.2.2 雙溪模型廠數據統計分析 116 第五章 結論與建議 121 參考文獻 …………………………………………...…………….…...123 附錄A …….………………………………………...…………….…...131 作者簡介 ………………………………………………....…………...140

    方世榮,「基礎統計學」,華泰文化事業公司,台北(1999)。
    林玉君,「以混凝-絮凝處理高濁度原水之研究」,碩士論文,國立台灣科技大學化學工程研究所,台北(2000)。
    Adin, A., Soffer, Y. and Aim, R. B., “Effluent pretreatment by iron coagulation applying various dose-pH combinations for optimum particle separation”, Water Science and Technology, Vol.38, No.6, pp.27-34(1998).
    Adin, A., Dean, L., Bonner, F., Nasser, A. and Huberman, Z., “Characterization and destabilization of spent filter backwash water particles”, Water Science and Technology: Water Supply, Vol.2, No.2, pp.115-122(2002).
    Al-Muzaini, S., “The use of air flotation for the treatment of industrial wastes discharged into coastal areas”, Journal of Environmental Science and Health, Part A: Environmental Science and Engineering, Vol.29, No.7, pp.1367-1382(1994).
    Amirtharajah, A. and Mills, K. M., “Rapid-mix desin for mechanisms of alum coagulation”, Journal of American Water Works Association, Vol.74, No.4, pp.210-216(1982).
    Arora, H., Giovanni, G. D. and Lechevallier, M., “Spent filter backwash water contaminants and treatment strategies”, Journal of American Water Works Association, Vol.93, No.5, pp.100-112(2001).
    Bache, D. H., Johnson, C., Mcgilligan, J. F. and Resool, E., “A conceptual view of floc structure in the sweep floc domain”, Water Science and Technology, Vol.36, No.4, pp.49-56(1997).
    Biggs, S., Habgood, M. J., Graeme, J. and Yan, Y. D., “Aggregate structures formed via a bridging flocculation mechanism”, Chemical Engineering Journal, Vol.80, No.1-3, pp.13-22(2000).
    Bourgeois, J. C., Walsh, M. E. and Gagnon, G. A., “Comparison of process options for treatment of water treatment residual streams”, Journal of Environmental Engineering and Science, Vol.3, No.6, pp.477-484(2004).
    Bruegger, A., “Reuse of filter backwash water using ultrafiltration technology”, Filtration and Separation, Vol.37, No.1, pp.22-26(2000).
    Brügger, A., Voßenkaul, K., Melin, T., Rautenbach, R., Golling, B., Jacobs, U. and Ohlenforst, P., “Reuse of spent filter backwash water by implementing ultrafiltration technology”, Water Science and Technology: Water Supply, Vol.1, No.5-6, pp.207-214(2001).
    Chakraborti, R. K., Gardner, K. H., Atkinson, J. F. and Van Benschoten, J. E., “Changes in fractal dimension during aggregation”, Water Research, Vol.37, No.4, pp.873-883(2003).
    Chow, C. W. K., Van Leeuwen, J. A., Drikas, M., Fabris, R., Spark, K. M. and Page, D. W., “The impact of the character of natural organic matter in conventional treatment with alum”, Water Science and Technology, Vol.40, No.9, pp.97-104(1999).
    Cocchia, S., Carlson, K. H. and Marinelli, F., “Use of total suspended solids in characterizing the impact of spent filter backwash recycling”, Journal of Environmental Engineering, Vol.128, No.3, pp.220-227(2002).
    Cornwell, D. A., and Lee, R., “Recycle stream recycling: its effects on water quality”, Journal of American Water Works Association, Vol.86, No.11, pp.50-63(1994).
    Cornwell, D. A. and MacPhee, M. J., “Effects of spent filter backwash recycle on Cryptoridium removal”, Journal of American Water Works Association, Vol.93, No.4, pp.153-162(2001).
    Dempsey, A., Gahno, R. M. and O’Melia, C. R., “Coagulation of humic substances by means of aluminum salts”, Journal of American Water Works Association, Vol.76, No.4, pp.141-150(1984).
    Dentel, S. K., “Application of the precipitation-charge neutralization model of coagulation”, Environmental Science and Technology, Vol.22, No.7, pp.825-832(1988).
    Dotremont, C., Molenberghs, B., Doyen, W., Bielen, P. and Huysman, K., “The recovery of backwash water from sand filters by ultrafiltration”, Desalination, Vol.126, No.1-3, pp.87-94(1999).
    Duan, J. and Gregory, J., “Coagulation by hydrolysing metal salts”, Advances in Colloid and Interface Science, Vol.100-102, pp.475-502(2003).
    Eades, A., Bates, B. J. and MacPhee, M. J., “Treatment of spent filter backwash water using dissolved air flotation”, Water Science and Technology, Vol.43, No.8, pp.59-66(2001).
    Edwards, G. A. and Amirtharajah, A., “Removal color caused by humic acids”, Journal of American Water Works Association, Vol.77, No.3, pp.50-57(1985)
    Edzwald, J. K., “Coagulation in drinking water treatment: particles, organics and coagulants”, Water Science and Technology, Vol.27, No.11, pp.21-35(1993).
    Edzwald, J. K., “Principle and applications of dissolved air flotation”, Water Science and Technology, Vol.31, No.3-4, pp.1-23(1995).
    Edzwald, J. K. and Tobiason, J. E., “Enhanced coagulation: US requirements and a broader view”, Water Science and Technology, Vol.40, No.9, pp.63-70(1999).
    Edzwald, J. K. and Tobiason, J. E., “Fate and removal Crytosporidium in a dissolved air flotation water plant with and without recycle of waste filter backwash water”, Water Science and Technology: Water Supply, Vol.2, No.2, pp.85-90(2002).
    Edzwald, J. K., Tobiason, J. E., Udden, C. T., Kaminski, G. S., Dunn, H. J., Galant, P. B. and Kelley, M. B., “Evaluation of the effect of recycle of waste filter backwash water on plant removals of Crytosporidium”, Journal of Water Supply: Research and Technology-AQUA,, Vol.52, No.4, pp.243-258(2003).
    Ferguson, C., Logsdon, G. S. and Curley, D., “Comparison of dissolved air flotation and direct filtration”, Water Science and Technology, Vol.31, No.3-4, pp.113-124(1995).
    Ganjidoust, H., Tatsumi, K., Yamagishi, T. and Gholian, R. N., “Effect of synthetic and natural coagulant on lignin removal from pulp and paper wastewater” Water Science and Technology, Vol.35, No.2-3, pp.291-296(1997).
    Gregory, J., “The density of particle aggregates”, Water Science and Technology, Vol.36, No.4, pp.1-13(1997).
    Gregory, J. and Duan, J., “Hydrolyzing metal salts as coagulants”, Pure Applied Chemistry, Vol.73, No.12, pp.2017-2026(2001).
    Heinzmann, B., “Coagulation and flocculation of stormwater from a separate sewer system - a new possibility for enhanced treatment”, Water Science and Technology, Vol.29, No.12, pp.267-278(1994).
    Hoyer, O. and Schell, H., “Monitoring raw water quality and adjustment of treatment processes - experiences at the Wahnbach reservoir”, Water Science and Technology, Vol.37, No.2, pp.43-48(1998).
    Huang, C. and Chen, Y., “Coagulation of colloidal particles in water by chitosan”, Journal of Chemical Technology and Biotechnology, Vol.66, No.3, pp.227-232(1996).
    Huang, C. P., “What to do with backwash water? The problem of Cryptosporidium and disinfection byproducts”, Proceedings 3rd International Workshop on Drinking Water Quality Management and Treatment Technology, Taiwan, R.O.C., pp.15-28(1997).
    Huang, C., Chen, S. and Pan, J. R., “Optimal condition for modification of chitosan: a biopolymer for coagulation of colloidal particles”, Water Research, Vol.34, No.3, pp.1057-1062(2000).
    James, C. R. and O’Melia, C. R., “Considering sludge production in the selection of coagulants”, Journal of American Water Works Association, Vol.74, No.3, pp.148-151(1982).
    Kawamura, S., “Optimization of basic water-treatment process-design and operation: sedimentation and filtration”, Journal of Water Supply: Research and Technology-AQUA,, Vol.45, No.3, pp.130-142(1996).
    Ke, S. Z., Yuan, H. Z., Yuan, R., Li, N. and Zeng, F. Y., “Reuse of filter backwash water and improvement of coagulation properties”, Zhongguo Jishui Paishui / China Water & Wastewater, Vol.16, No.6, pp.9-12(2000).
    Le Gouellec, Y. A., Cornwell, D. A. and MacPhee, M. J., “Treating microfiltration backwash”, Journal of American Water Works Association, Vol.96, No.1, pp.72-83(2004).
    Lee, J. D., Lee, S. H., Jo, M. H., Park, P. K., Lee, C. H. and Kwak, J. W., “Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment”, Environmental Science and Technology, Vol.34, No.7, pp.3780-3788(2000).
    Nasser, A., Huberman, Z., Dean, L., Bonner, F. and Adin, A., “Coagulation as pretreatment of SFBW for membrane filtration”, Water Science and Technology: Water Supply, Vol.2, No.5-6, pp.301-306(2002).
    Offringa, G., “Dissolved air flotation in southern Africa”, Water Science and Technology, Vol.31, No.3-4, pp.159-172(1995).
    Pan, J. R., Huang, C., Chen, S. and Chung, Y. C., “Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.147, No. 3, pp.359-364(1999).
    Scharfenaker, M. A., “Reg watch: USEPA adopts streamlined filter backwash recycling rule”, Journal of American Water Works Association, Vol.93, No.8, pp.24-30(2001).
    Song, H., Fan, X., Zhang, Y., Wang, T. and Feng, Y., “Application of microfiltration for reuse of backwash water in a conventional water treatment plant - a case study”, Water Science and Technology: Water Supply, Vol.1, No.5-6, pp.199-206(2001).
    Tambo, N. and Kamei, T., “Coagulation and flocculation on water quality matrix”, Water Science and Technology, Vol.37, No.10, pp.31-41(1998).
    Tobiason, J. E., Edzwald, J. K., Levesque, B. R., Kaminski, G. K., Dunn, H. J. and Galant, P. B., “Full-scale assessment of waste filter backwash recycle”, Journal of American Water Works Association, Vol.95, No.7, pp.80-93(2003).
    Tobiason, J. E., Edzwald, J. K., Gilani, V., Kaminski, G. S., Dunn, H. J. and Galant, P. B., “Effects of waste filter backwash recycle operation on clarification and filtration”, Journal of Water Supply: Research and Technology-AQUA, Vol.52, No.4, pp.259-275(2003).
    U.S. Environmental Protection Agency, “40 CFR Parts 9, 141, and 142. National primary drinking water;filter backwash recycling rule;final rule”, Federal Register(Part Ⅳ), Vol.66, No. 111, pp. 31086-31105(2001).
    Vigneswaran, S., Boonthanon, S. and Prasanthi, H., “Filter backwash water recycling using crossflow microfiltration”, Desalination, Vol.106, No.1-3, pp.31-38(1996).
    Vos, G., Brekvoort, Y. and Buys, P., “Full-scale treatment of filter backwash water in one step to drinking water”, Desalination, Vol.113, No.2-3, pp.283-284(1997).
    Waite, T. D., “Measurement and implications of floc structure in water and wastewater treatment”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.151, No. 1-2, pp.27-41(1999).
    Wang, L. K., Pallo, P. E., Schqartz, B. J. and Kown, B. T., “Continuous pilot plant study of recycling of filter backwash water”, Journal of American Water Works Association, Vol.65, No.5, pp.355-358(1973).
    Wang, D., Sun, W., Xu, Y., Tang, H. and Gregory, J., “Speciation stability of inorganic polymer flocculant-PACl”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.243, No.1-3, pp.1-10(2004).
    Willemse, R. J. N. and Brekvoort, Y., “Full-scale recycling of backwash water from sand filters using dead-end membrane filtration”, Water Research, Vol.13, No.15, pp.3379-3385(1999).

    QR CODE