簡易檢索 / 詳目顯示

研究生: 鄭雅伶
Ya-ling Cheng
論文名稱: 階段性加藥混凝-膠凝程序處理自來水之研究
Staged coagulation-flocculation processes in drinking water treatment
指導教授: 劉志成
Jhy-chern Liu
口試委員: 顧洋
Young Ku
黃志彬
Chih-pin Huang
王明光
Ming-kuang Wang
李篤中
Duu-jong Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 93
中文關鍵詞: 快混強度膠羽強度濁度二階段加藥自來水處理混凝-膠凝
外文關鍵詞: turbidity, water treatment, mixing intensity, polyaluminum chloride (PACl), floc, Coagulation-flocculation
相關次數: 點閱:216下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的在探討階段式加藥對自來水處理效能之影響。以不同水質條件之原水進行分析,比較以不同加藥模式、加藥比例及混凝時間對混凝效果的差異性;並透過膠羽特性的量測,以瞭解膠羽的聚集情形,藉以評估階段加藥的整體性能。實驗中分為兩大部分進行,先透過瓶杯試驗進行初步的定性及反應機制的討論,再藉以模型廠的實行進一步驗證其結果。
    實驗結果顯示,相較於傳統一階段加藥,透過二階段加藥的方式可以獲得較穩定的處理效果,較佳的膠羽強度、以及提昇大分子有機物的去除;此外,亦可降低混凝劑的使用量。利用二段式的添加混凝劑的方式,不僅可有效的克服因加藥不均或顆粒間靜電力與空間障礙而難以聚集的問題,同時又可幫助核種生成,進而增加後續膠羽集結的機率。但須注意的是,在有機質含量較高的情形下,加藥比例的改變會影響濁度的移除效果。
    透過模廠實驗可以發現,在傳統一階段加藥模式下,透過延長攪拌時間可助於濁度的移除,但當攪拌強度越過一定門檻後,攪拌時間的增加對濁度去除的效果有限;若搭配二段式加藥的方式,則透過快混時間的再延長不但可以達到均勻分散混凝劑的目的,同時可以有效幫助緻密細小的晶核形成,而達到強化濁度去除的效果。


    Staged coagulation-flocculation in water treatment was studied using raw water from Taipei Waterworks. Both bench and pilot-scale experiments were conducted to compare effectiveness between single- and two-stage coagulation-flocculation. Turbidity, UV254 absorbance and total organic carbon (TOC) were utilized to assess performance. Small angle light scattering instrument and microscopic camera were used to measure floc size distribution and floc structures.
    The results from these experiments indicated that the two-stage coagulation-flocculation generally resulted in lower or equivalent residual turbidity than single-stage process. However, when PACl was used as coagulant in water samples high in UV254 absorbance, the removal efficiency was affected by dosing scheme and dosing ratio. No significant difference was found in floc size distribution resulting from different dosing schemes. However, more compact structure of flocs formed in two-stage coagulation process.
    More importantly, mixing intensity and duration in rapid mixing exhibited significant impact on coagulation efficiency. The results showed that in single-stage coagulation double mixing time resulted in lower residual turbidity. However, no significant effect was found when rapid mixing time was longer than 6 min. In addition, two-stage coagulation process and prolonged mixing time could ensure effective treatment. It is proposed that in two-stage coagulation, the nuclei formed in first stage. Then formation of more active sites that colloidal particles may aggregate into large flocs occurred in second stage. Consequently, the enhanced efficiency was achieved and stronger flocs were formed.

    摘要…………………………………………………………………I Abstract…………………………………………………… ……II 致謝………………………………………………………………III 目錄 ………………………………………………………………IV 圖目錄 ……………………………………………………………VI 表目錄 ……………………………………………………………IX 第一章 緒 論……………………………………………………………………1 第二章 理論基礎與文獻回顧 ……………………………………2 2.1 原水來源與處理背景………………………………………2 2.1.1 水質簡介………………………………………………2 2.1.2 淨水場背景簡介………………………………………2 2.2 國內外相關階段性加藥之研究……………………………3 2.3 混凝基本原理………………………………………………5 2.3.1混凝劑的特性 …………………………………………5 2.3.2快混於混凝中的角色 …………………………………6 2.4 膠羽特性……………………………………………………7 2.4.1膠羽粒徑分佈 …………………………………………8 2.4.2碎形維度 ………………………………………………8 2.4.3膠羽強度 ………………………………………………9 第三章 實驗設備與方法…………………………………………11 3.1實驗水樣……………………………………………………11 3.1.1瓶杯試驗之原水水樣……………………………………11 3.1.2模型廠試驗之原水水樣………………………………11 3.2實驗藥品……………………………………………………11 3.3實驗設備與裝置……………………………………………13 3.4實驗方法與流程……………………………………………16 3.4.1瓶杯試驗………………………………………………16 3.4.2模廠實驗………………………………………………17 3.4.2.1模型槽規格及水利參數…………………………17 3.4.2.2模廠實驗流程……………………………………18 3.5水樣分析測定方法…………………………………………21 3.5.1殘餘濁度分析…………………………………………21 3.5.2界達電位分析…………………………………………21 3.5.3 UV-VIS光譜分析 ……………………………………22 3.5.4總溶解有機碳(DOC)分析 …………………………22 3.5.5粒徑分佈及碎形維度分析……………………………23 3.5.6顯微觀察暨影像分析…………………………………24 3.6原水基本性質測定方法……………………………………25 3.6.1酸鹼度…………………………………………………25 3.6.2導電度…………………………………………………25 3.6.3鹼度……………………………………………………26 第四章 實驗結果與討論…………………………………………27 4.1階段加藥模式之比較………………………………………28 4.1.1階段加藥對低濁度原水之影響………………………29 4.1.2階段加藥對高濁度原水之影響………………………35 4.2模廠試驗……………………………………………………57 4.2.1 PACl加藥策略改變對沉澱池出流水之影響 ………57 4.2.2一階段加與兩階段加藥程序之操作性………………64 第五章 結論與建議………………………………………………69 參考文獻 …………………………………………………………71 附錄A 艾莉颱風水樣二階段加藥模式下之粒徑分佈…………81 附錄B 模型廠背景實驗數據……………………………………85 作者簡介 …………………………………………………………93

    臺北自來水事業處,「高濁度處理技術探討」,研究報告,臺北(1998)

    甘其銓,「淨水廠濁度去除效能評估及混凝監測之研究─以豐原淨水廠為例」,碩士論 文,國立交通大學環境工程研究所,新竹(1996)

    曾致堯,「碎形膠羽的沉降行為研究」,碩士論文,私立中央大學化學工程研究所,中壢(1998)

    林玉君,「以混凝—絮凝處理高濁度原水之研究」,碩士論文,國立台灣科技大學化學工程研究所,臺北(2000)

    黃瑞益,「調理攪拌強度對污泥膠羽強度及後續脫水效率之影響」,碩士論文,私立逢甲大學土木及水利工程研究所,臺中(2000)

    陳兩全,「高速膠凝沉澱池污泥特性之研究」,碩士論文,國立台灣大學化學工程研究所,台北(2000)

    李坤峰,「飲用水處理程序二階段添加PAC與污泥毯穩定度提升之研究」,碩士論文,私立元智大學化學工程學系,桃園縣(2001)

    宋尚軒,「有機物對膠羽性質與污泥毯穩定性之影響」,碩士論文,國立臺灣大學化學工程研究所,臺北(2002)

    甘其銓,「淨水混凝之快混操作參數決定:去穩機制與聚集動力解析」,博士論文,國立交通大學環境工程研究所,新竹(2002)

    洪嘉蔚,「有機物對污泥氈澄清池特性及生成潛能之影響探討」,碩士論文,國立交通大學環境工程研究所,新竹(2004)

    Adin, A. and Asano, T. (1998). Role of physical-chemical treatment in wastewater reclamation and reuse. Wat. Sci. Tech., 37(10), 79-90.

    Amirtharajah, A. and Mills, K.M. (1982). Rapid-mix design for mechanism of alum coagulation. J. Am. Water Works Assoc., 74(4), 210-216.

    Amirtharajah, A., and O’Melia, C.R. (1990). Coagulation processes; destabilization, mixing, and flocculation. McGraw-Hill, New York, 269-365.

    Annadurai, G., Sung, S.S. and Lee, D.J. (2002). Factorial design analysis for turbidity and humic acid removal from high turbidity stormwater and floc characteristics. J. Chin. Inst. Chem. Engrs., 33(4), 353-364.

    Bache, D.H. and Hossain, M.D. (1991). Optimum coagulation conditions for coloured water in terms of floc properties. J. Water SRT - Aqua, 40(3), 170-178.

    Bache, D.H., Johnson, C., Mcgilligan, F.J. and Rasool, E. (1997). A conceptual view of floc structure in the sweep floc domain. Wat. Sci. Tech., 36(4), 49-56.

    Bache, D.H., Rasool, E., Moffat, D. and Mcgilligan, F.J. (1999). On the strength and character of alumino-humic flocs. Wat. Sci. Tech., 40(9), 81-88.

    Billica, J.A. and Gertig, K.R. (2000). Optimization of a coagulation to treat high TOC, low alkalinity water and its impact on filtration performance. Proc. Am. Water Works Assoc. Water Qual. Technol. Conf.

    Burgess, M.S., Curley, J.E., Wiseman, N. and Xiao, H. (2002). On-line optical determination of floc size. part I: principles and techniques. J. Pulp. Pap. Sci., 28(2), 63-65.

    Burgess, M.S., Curley, J.E., Wiseman, N. and Xiao, H. (2002). On-line optical determination of floc size. part II: the effect of shear on floc size. J. Pulp. Pap. Sci., 28(10), 323-326.

    Bouyer, D., Line A., Cockx, A. and Do-Quang, Z. (2001). Experimental analysis of floc size distribution and hydrodynamics in a jar-test, Chem. Eng. Res. Des., 79(8), 1017-1024.

    Carlson, K.H. and Gregory, D. (2000). Optimizing water treatment with two-stage coagulation. J. Environ. Eng., ASCE, 126(6), 556-561.

    Chakraborti, R.K., Atkinson, J.F. and Van Benschoten, J.E. (2000). Characterization of alum floc by image analysis. Environ. Sci. Techol., 34(18), 3969-3976.

    Chow, C.W.K., Van Leeuwen, J.A., Drikas, M., Fabris, R., Spark, K.M. and Page, D.W. (1999). Impact of the character of natural organic matter in conventional treatment with alum. Wat. Sci. Tech., 40(9), 97-104.

    Cotton, A.P., Ellis, K.V. and Khowaja, M.A. (1994). Some options for water treatment in disaster situations. J. Water SRT - Aqua, 43(6), 303-310.

    Dentel, S.K. (1988). Application of the precipitation-charge neutralization mode of coagulation. Environ. Sci. Techol., 22(7), 825-832.

    Dentel, S.K. (1991). Coagulant control in water treatment. Crit. Rev. Env. Control, 21(1), 41-135.

    Edward, G.A. and Amirtharajah, A. (1985). Removing color caused by humic acids. J. Am. Water Works Assoc., 77(3), 50-57.

    Edzwald, J.K. (1993). Coagulation in drinking water treatment: particles, organics and coagulants. Wat. Sci. Tech., 27(11), 21-35.

    Edzwald, J.K. and Tobiason, J.E. (1999). Enhanced coagulation: US requirements and a broader view. Wat. Sci. Tech., 40(9), 63-70.

    Ebie, K. and Amano, S. (1993). Fundamental Behavior of humic acid and kaolin in direct sand filtration of simulated natural surface water. Wat. Sci. Tech., 27(11), 61-70.

    Epstein, S.G. (1990). Human exposure to aluminum. Environ. Geochem. Health, 12(1-2), 65-70.

    Eric, M.V., Amy, E.C., Menachem, E., Theodore, S.T. and Mark, D.B. (1998). Removing particles and THM precursors by enhanced coagulation. A pilot-scale study shows that enhanced coagulation removes both particles and THM precursors. J. Am. Water Works Assoc., 90(4), 139-150.

    Exall, K.N. and Vanloon, G.W. (2000). Using coagulations to remove organic matter. J. Am. Water Works Assoc., 92(11), 93-102.

    Fearing, D.A., Goslan, E.H., Banks, J., Wilson, D., Hillis, P., Campbell, A.T. and Parsons, S.A. (2004). Staged coagulation for treatment of refractory organics. J. Environ. Eng., ASCE, 130(9), 975-982.

    Francois, R.J. (1987). Ageing of aluminium hydroxide flocs. Wat. Res., 21(5), 523-531.

    Francois, R.J. (1987). Strength of aluminium hydroxide flocs. Wat. Res., 21(9), 1023-1030.

    Garrote, J.I., Bao, M., Castro, P. and Bao, M.J. (1995). Treatment of tannery effluents by a two step coagulation/flocculation process. Wat. Res., 29(11), 2605-2608.

    Glasgow, L.A. (1989). Effects of the physiochemical environment on floc properties. Chem. Eng. progr., 85(8), 51-55.

    Gregory, J. and Dupont, V. (2001). Properties of flocs produced by water treatment coagulations. IWA Proc. Sludge Management Conference. Taipei, Taiwan. 381-386.

    Gregory, J. (1997). The Density of Particle Aggregates. Wat. Sci. Tech., 36(4), 1-13.

    Gregor, J.E., Nokes, C.J. and Fenton, E. (1997). Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation. Wat. Res., 31(12), 2949-2958.

    Heinzmann, B. (1994). Coagulation and flocculation of stormwater from a separate sewer system - a new possibility for enhanced treatment. Wat. Sci. Tech., 29(12), 267-278.

    Hoyer, O. and Schell, H. (1998).Monitoring raw water quality and adjustment of treatment processes─experiences at the wahnbach reservoir. Wat. Sci. Tech., 37(2), 43-48.

    Huang, C.P. and Shiu, H.L., (1996). Interactions between alum and organics in coagulation. Colloids Surf. A, 113, 155-163.

    Jacangelo, J.G., Laine, J.M., Cummings, E.W. and Adham, S.S. (1995). UF with pretreatment for removing DBP precursors. J. Am. Water Works Assoc., 87(3), 100-115.

    Janssens, J.G. and Buekens, A. (1993). Assessment of process selection for particle removal in surface water treatment. J. Water SRT - Aqua, 42, 279-288.

    Jegatheesan, V., Lamsal, P.R., Visvanathan, C., Nga, H.H. and Shu, L. (2002). Effects of natural organic compounds on the removal of organic carbon in coagulation and flocculation process. Wat. Sci. Tech., 2(5-6), 473-479.

    Kan, C.C. and Huang, C.P. (1998). Coagulation monitoring in surface water treatment facilities. Wat. Sci. Tech., 38(3), 237-244.

    Kan, C.C., Huang, C.P. and Pan, J.R. (2002). Time requirement for rapid-mixing in coagulation. Colloids Surf. A, 203(1-3), 1-9.

    Kan, C.C., Huang, C.P. and Pan, J.R. (2002). Coagulation of high turbidity water: the effects of rapid mixing. J. Water SRT - Aqua, 51(2), 77-85.

    Kimberly, B.A., Morteza, A., Eva, I., Debbie, V. and Mark, L. (2000).
    Conventional and optimized coagulation for NOM removal. J. Am. Water Works Assoc., 92(10), 44-58.

    Koether, M.C., Deutschman, J.E. and van Loon, G.W. (1997). Low cost polymeric aluminum coagulant. J. Envir. Eng. ASCE, 123, 859-864.

    Lartiges, B.S., Bottero, J.Y., Democrate, C. and Coupl, J.F. (1995). Optimising flocculant demand by following floc size distribution. J. Water SRT - Aqua, 44(5), 219-223.

    Lee, D.J. (1994). Floc structure and bound water content in excess activated sludge. J. Chin. Inst. Chem. Engrs., 25, 201-207.

    Lee, D.J., Chen, G.W., Liao, Y.C. and Hsieh, C.C. (1996). On the free-settling test for estimating activated sludge floc density. Wat. Res., 30(3), 541-550.

    Lee, J.F., Liao, P.M., Tseng, D.H. and Wen, P.T. (1998). Behavior of organic polymers in drinking water purification. Chemosphere, 37(6), 1045-1061.

    Li, D.H. and Ganczarczyk, J.J. (1989). Stroboscopic determination of settling velocity, size and porosity of activated sludge floc. Wat. Res., 21(3), 257-262.

    Li, G. and Gregory, J. (1991). Flocculation and sedimentation of high-turbidity waters. Wat. Res., 25, 1137-1143.

    Lovins III, W.A., Duranceau, S.J., Gonzalez, R.M. and Taylor, J.S. (2003). Optimized coagulation assessment for a highly organic surface water supply. J. Am. Water Works Assoc., 95(10), 94-108.

    Mandelrot, B.B. and Benoit, B.M. (1982). The fractal geometry of nature. 1st edition, W. H. Freeman and Company, New York, U. S. A.

    Marhaba, T.F. and Pipada, N.S. (2000).Coagulation: Effectiveness in removing dissolved organic matter fractions. Environ. Eng. Sci., 17(2), 107-115.

    Mhaisalkar, V.A., Paramasivam, R. and Bhole, A.G. (1991). Optimizing physical parameters of rapid mix design for coagulation-flocculation of turbid waters. Wat. Res., 25(1), 43-52.

    Mullin J. W. (1993). Crystallization, 3rd edition, Reed Educational and Professional Publishing Ltd, London, UK.

    Muralidhara, E.S. (1986). Advances in solid-liquid separation. Battele Memorial Institute, Columbus, Ohio.

    Narayan S. T. (1995). Industrial crystallization. Plenum Publish Corporation, New York, U.S.A.

    O’Melia, C.R., Becker, W.C. and Au, K.K. (1999). Removal of humic substances by coagulation. Wat. Sci. Tech., 40(9), 47-54.

    Owen, D.M., Amy, G.L., Chowdhury, Z.K., Paode, R., McCoyand, G. and Viscosil, K. (1995). NOM characterization and treatability. J. Am. Water Works Assoc., 87(1), 46-63.

    Rossini, M., Garrido, J.G. and Galluzzo, M. (1999). Optimization of the coagulation-flocculation treatment: influence of rapid mix parameters. Wat. Res., 33(8), 1817-1826.

    Rout, D., Verma, R. and Agarwal, S.K. (1999). Polyelectrolyte treatment─an approach for water quality improvement. Wat. Sci. Tech., 40(2), 137-141.

    Selomulya, C., Bushell, G., Amal, R. and Waite, T.D. (2002). Aggregation mechanisms of latex of different particle sizes in a controlled shear environment. Langmuir, 18(6), 1974-1984.

    Shin, W.K. and Chiang, C.L. (1998). Treatment of high turbidity water. Proceeding 4th international workshop on drinking water quality management and treatment technology, March4-5, Taiwan, R.O.C.

    Tambo, N. and Kamei, T. (1998). Coagulation and flocculation on water quality matrix. Wat. Sci. Tech., 37(10), 31-41.

    Tambo, N. and Watanabe, Y. (1979). Physical charateristics of flocs-I. the floc density function and aluminum floc. Wat. Res., 13(5), 409-419.

    Van Benschoten, J.E. and Edzwald, J.K. (1990a). Chemical aspects of coagulation using aluminum salt-I. Hydrolytic reactions of alum and polyaluminum chloride. Wat. Res., 24(12), 1519-1526.

    Van Benschoten, J.E. and Edzwald, J.K. (1990b). Chemical aspects of coagulation using aluminum salt-II. Hydrolytic reactions of alum and polyaluminum chloride. Wat. Res., 24(12), 1527-1535.

    Wahlroos, G. (1991). The Realization of activated-carbon filtration in a water purification process for highly humic water by prior two-stage iron (III) salt coagulation. J. Water SRT - Aqua, 40(4), 211-216.

    Waite, T.D. (1999). Measurement and implications of floc structure in water and wastewater treatment. Colloids Surf. A, 151(1-2), 27-41.

    Wang, X.C., Jin, P.K. and Gregory, J. (2002). Structure of Al-humic floc and their removal at slightly acidic and neutral pH. Wat. Sci. Tech., 2(2), 99-106.

    Wang, D., Sun, W., Xu, Y., Tang, H. and Gregory, J. (2004). Speciation stability of inorganic polymer flocculant─PACl. Colloids Surf. A, 243(1-3), 1-10.

    Wen, H.J. and Lee, D.J. (1999). Strength of cationic polymer flocculated clay slurries flocs. Adv. Environ. Res., 2, 390-397.

    Yoshihiko, M., Akira, Y., Yuji, F. and Tasuku, K. (1998). Dynamic analysis of coagulation with alum and PACl. J. Am. Water Works Assoc., 90(10), 96-106.

    Yukselen, M.A. and Gregory, J. (2004). The effect of rapid mixing on the break-up and re-formation of flocs. J. Chem. Technol. Biotechnol., 79(7), 782-788.

    Yu, X. and Somasundaran, P. (1993). Enhanced flocculation with double flocculants. Colloids Surf. A, 81, 17-23.

    Zhang, J. and Buffle, J. (1996). Multi-method determination of the fractal dimension of hematite aggregates. Colloids Surf. A, 107, 175-187.

    QR CODE