簡易檢索 / 詳目顯示

研究生: 楊文欣
Wen-shin Yang
論文名稱: 非破壞性聲光同步技術驗證類岩斜剪試驗之剪角影響與預裂效應
Synchronization of Acoustic and Optical Nondestructive Techniques to Investigate the Effects of Shear Angle and Pre-exist Crack on Rock-like Material during Inclined Shear Tests
指導教授: 陳堯中
Yao-chung Chen
口試委員: 陳立憲
none
黃兆龍
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 143
中文關鍵詞: 初裂叢聚電子斑紋干涉術聲射法預裂剪角水泥砂漿斜向剪切試驗儀裂衍雙剪裂帶
外文關鍵詞: localization, shear angle, pre-existing crack, electronic speckle pattern interferometry(ESPI), acoustic emission (AE), mortar, Inclined shear test, crack initiation, crack propagation, bi-shear zone
相關次數: 點閱:458下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過去對於岩石力學與工程之研究,多於巨觀行為之探討,對不同應力路徑下,微觀裂隙之生、衍等破壞特徵則較少觸及,究其因除受限於傳統力學試驗,相關之微觀非破壞檢測技術,仍有極大之進步空間。
因此本研究乃以同步化聲、光非破壞檢測技術應用於自行研發斜向剪切試驗儀,並調整水泥砂漿配比以模擬中等強度之類岩材料,進行研探岩材受剪行為下,其剪角(客體)與預裂(主體)之影響,冀能研探從微觀至巨觀之破壞機制,作為科學與工程應用之佐參。
基於平面應變之受剪狀態下,藉由變數之設置:(1)斜剪角度(β=50∼75°)、(2)預裂之幾何形狀(試體中央無預裂、扁長型與圓孔型預裂),與開口位移控制(COD)以求完整加載歷程。則可藉由聲射(AE)技術研探岩材內部受剪產生微震裂源(microseismic locations)之發生時機與空間分佈,並與電子斑紋干涉術(ESPI)所偵測之岩材外部因受剪變形引致之干涉影像同步比對,以研探類岩材料之三項破壞演化特徵:叢聚(localization)、初裂(initiation of crack)與裂衍(crack propagation)。
觀察無預裂及圓孔型斜剪試驗結果發現,隨剪角β增大(即正向應力降低),加載曲線之勁度與強度兩者隨之降低,在無預裂試體中,其破壞之裂衍角有反轉趨勢乃至其值亦隨之增大,亦即其產生之剪力破壞模式由相對高正向應力產生之壓-剪破壞(β=ψ∼50°);漸次變成相對低正向應力下,允許膨脹之單一裂縫(β=50∼60°)或雙剪裂帶(β=60∼75°)。
至於預裂對受剪行為之影響,圓孔型預裂試體中,預裂處有明顯應力集中的現象產生,其裂衍角會隨著剪角β增加而上升。而對AE事件分佈之特徵寬度λd之評估中,在無預裂狀態下隨著β的增加,其λd亦隨之增加,在相同剪角下,圓孔型預裂縫之λd大於無預裂試體。
利用聲射法觀察材料微裂之演化,可研判其叢聚之發生時機與其位置,再與電子斑紋干涉術所觀察到之初裂與裂衍位置比對,發現兩者所觀察到之破壞趨勢約略一致,未來可用此與斜剪試驗;進一步模擬相關岩體或節理之受剪行為。


Most of the experimental studies in rock mechanics and engineering were conducted in the viewpoint of macro-scale, and fewer micro-view researches focus on the fracture characterizations such as crack initiation and propagation in stressed rock due to the limitation of nondestructive techniques.This experimental study, therefore, aims at the synchronization of both acoustic and optical nondestructive techniques to investigate the effects of shear angle and pre-exist crack on rock-like material (mortar) under inclined shear tests.
Based on the plane strain condition of shearing specimen under COD (crack opening displacement) control, a series of experimental tests were performed to obtain entire loading curves by varying: (1) the inclined angleranged from 50 to 75°, and (2) the material geometry with or without pre-existing crack (penny and circular shapes in the middle of specimen). In conjunction of both AE (acoustic emission), used to detect the micro-seismic activities within the rock, and ESPI (electronic speckle pattern interferometry) techniques detected the deformation field on the rock surface, the evolution of fracture can be examined during the shearing process.
The results show that three fracturing characterizations have been verified corresponding to the inclined shear test: localization, crack initiation and propagation.
In addition, this study presents the effect of the inclined angle  on the shear stiffness, strength at failure, the crack propagation angle  as well as the different failure modes: mixed compression-shearing failure mode as =-50°due to the relatively high normal stress; dilation-allowed shearing mode with either forming a single shear zone
(= 50-60°) or bi-shear zone (= 60-75°) due to the relatively low normal stress. Specimen with pre-existing circular crack shows the stress concentration surrounding circular hole and the crack propagation angle  increases as increasing the shear angle .
Furthermore, experiments without pre-existing crack show that the larger the shear angle , the wider the width of the AE events, λd. Similarly, experiments with pre-existing circular crack display the wider λd. comparing with the one without pre-existing crack.
The use of AE can be used to detect the localization while ESPI can be used to verify crack initiation and propagation. Both results were compared each other and depicted a good agreement. By synchronizing both AE and ESPI techniques could also be adopted to examine the shearing mechanism in rock mass and joined rock as well.

目 錄 論 文 摘 要 I ABSTRACT III 誌 謝 V 目 錄 VI 表 目 錄 IX 圖 目 錄 X 符號對照表 XIII 第一章、緒 論 1 1.1 背景及動機………………………………………………………………..1 1.2 研究目的…………………………………………………………………..2 1.3 範圍與方法………………………………………………………………..3 1.4 論文內容…………………………………………………………………..5 第二章、文獻回顧 8 2.1 斜向剪切試驗之沿革與創新……………………………………………..8 2.2定性式岩石單壓行為之破壞演化模式…………………………………...9 2.3 斜向剪切試驗之破壞模式………………………………………………11 2.3.1 岩體延性與脆性破壞理論…………………………………………11 2.3.2 岩材強度與變形關係………………………………………………13 2.3.3剪力試驗破壞型態………………………………………………….13 2.3.4 粗糙角之定義與求算………………………………………………14 2.4 線彈性破壞力學沿革與應用…………………………………………....17 2.4.1 觀念緣起……………………………………………………………17 2.4.2 理論發展……………………………………………………………18 2.4.3 Griffith能量平衡理論………………………………………………18 2.4.4 應力強度因子與破壞韌度…………………………………………20 2.5非破壞檢測-聲射技術之發展…………………………………………...20 2.5.1 聲射定位原理………………………………………………………22 2.5.2 聲射定位準則………………………………………………………23 2.6 非破壞檢測-電子斑紋干涉術沿革與應用……………………………..25 2.6.1 光測力學基本理論…………………………………………………25 2.6.2 電子斑紋干涉術……………………………………………………26 2.6.3 斑點效應特性………………………………………………………27 2.6.4 面內位移系統………………………………………………………27 第三章、試驗架構與執行………………………………………………………44 3.1 材料選配及試體製作……………………………………………………45 3.1.1 試驗材料……………………………………………………………45 3.1.2 試體製作流程………………………………………………………45 3.1.3 基本力學試驗及結果………………………………………………47 3.2 試驗設備…………………………………………………………………48 3.2.1斜剪試驗設備……………………………………………………….48 3.2.2 聲射(AE)儀器……………………………………………………50 3.2.3 電子斑紋干涉技術(ESPI)儀器…………………………………52 3.3 方法與流程………………………………………………………………53 3.3.1 校正檢驗……………………………………………………………54 3.3.2 不同剪角之斜剪破裂試驗步驟……………………………………57 第四章、試驗結果與分析………………………………………………………76 4.1 試驗參數與力學性質參數說明…………………………………………77 4.1.1 試驗參數說明………………………………………………………78 4.1.2 斜向剪切儀求算巨觀強度參數之驗證……………………………79 4.1.3 力學性質參數說明…………………………………………………80 4.2 剪角與預裂對巨觀破壞行為之影響……………………………………80 4.2.1 剪角對類岩材料之斜剪加載歷程之影響…………………………80 4.2.2 預裂對類岩材料之斜剪加載歷程之影響…………………………81 4.2.3 剪角於類岩之裂衍特徵……………………………………………82 4.2.4 斜向剪切試驗之粗糙角求算………………………………………84 4.3 剪角與預裂對微觀破壞行為之影響……………………………………84 4.3.1 剪角對微震裂源與加載歷程之關係………………………………84 4.3.2 預裂對微震裂源與加載歷程之關係………………………………86 4.3.3 聲射位源之分佈帶寬………………………………………………87 4.4 剪角與預裂對微觀裂隙演化之影響……………………………………89 4.4.1 相同剪角對預裂之空間演化………………………………………89 4.4.2 剪裂帶之裂衍特徵…………………………………………………89 4.4.3 剪角對試體微觀行為之時間演化…………………………………90 4.5 複合式非破壞耦合檢測之成果研析……………………………………90 4.5.1 微震裂源叢聚、初裂、裂衍與尖峰狀態之比對…………………91 5.1 結論……………………………………………………………………..122 5.1.1 剪角對破壞行為之影響…………………………………………..122 5.1.2 預裂對破壞行為之影響…………………………………………..123 5.1.3 非破壞檢測之耦合………………………………………………..124 5.2 建議……………………………………………………………………..125 5.2.1 試驗材料之建議…………………………………………………..125 5.2.2 破壞性試驗之建議………………………………………………..126 5.2.3 非破壞檢測之建議………………………………………………..126 參考文獻……………………………………………………………………….130 附 錄A:校正實驗及相關資料與照片………………………………………...134 附 錄B:委員意見回附表………………………………………………….…..139 作者簡介……………………………………………………………………….142

參考文獻
1.小林英男,「破壞力學」,龍璟文化,台北 (2002)。
2.李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北 (2006)。
3.李佳龍,「音洩定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
4.林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2006)。
5.胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北 (2007)。
6.陳家豪,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集 (2004)。
7.洪啟德,「岩石之模擬材料與其直接剪力破壞模式之研究」,碩士論文,國立台灣大學土木工程學系,台北 (1989)。
8.張健峰,「黑色片岩預應力室內試驗推估方法之研究」,碩士論文,國立成功大學土木工程系,台南 (2007)。
9.楊長義,模擬規則節理面岩體強度與變形性之研究,博士論文,國立台灣大學土木工程研究所,台北 (1992)。
10.廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,國立成功大學土木工程系,台南 (1993)。
11.劉信良,「複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
12.劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔形貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2007)。
13.蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北 (2005)。
14.應傳智,「人工軟弱岩石之研究」,碩士論文,國立台灣大學土木工程系,台北(1995)。
15.魏德禎,「岩石斜向剪切試驗暨其聲光非破壞檢測之佐驗」碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
16.Butters, J. N and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Measurements," Transactions of the Institute of Measurement and Control, Vol. 4, p 349-354 (1971).
17.Bray, D. E. and McBride, D., "Acoustic Emission Technology." Nondestructive Testing Techniques, New York, p 345-377, John Wiley & Sons Inc. (1992).
18.Berthelot, J. M., "Frequency Analysis of Acoustic Emission Signals in Concrete," Journal of Acoustic Emission, Vol. 11, No. 1, p 11-18 (1993).
19.Butters, J. N. and Leendertz, J. A., “Holographic and Video Techniques Applied to Engineering Mesurements,” Transactions of the Institute of Measurement and Control, Vol. 4, pp.349-354 (1971).
20.Chen, L. H., “Failure of Rock Under Normal Wedge Indentation,” Ph. D. Thesis, University of Minnesota, USA (2002).
21.Chen, L. H. and Labuz, J. F., "Indentation of Rock Failure by Wedge-Shaped Tools,", International Journal of Rock Mechanics and Mining Sciences. Vol. 43, p1023-1033 (2006).
22.Detournay, E., Fairhurst, C. and Labuz, J. F., "A Model of Tensile Failure Initiation under an Indentor," In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria (1995).
23.Fowler, T. J., "Acoustic Emission of Fiber Reinforced Plastics," Journal of the Technical Councils of ASCE, Proceedings of the ASCE, Vol. 105, No. 2, p 281-289 (1979).
24.Gabor, D., “A New Microscopic Principle,” Nature, Vol. 161, pp.777-778 (1948).
25.Griffith, A. A., “The phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society. London A221, Vol. 221, p 163-197 (1921).
26.Hertz, H. H., Hertz's Miscellaneous papers, London: Macmillan. (1896).
27.Holcomb, D. J. and Costin L. S.,. "Detecting Damage Surface in Brittle Materials Using Acoustic Emission," ASME, Journal of Applied Mechanics. Vol. 53, p 536-544 (1986).
28.Irwin, G. R., “Analysis of Stresses and Strain Near the End of A Crack,” Trans. ASME, Journal of Applied Mechanics., Vol. 24, pp.361-364 (1957).
29.James, D. L., "Acoustic Emission Investigation into Some Concrete Construction Problems," Journal of Acoustic Emission, Vol. 8, No. 1-2, p s322-s325. World Meeting on Acoustic Emission. (1989).
30.Johnson, K. L.,. Contact Mechanics, Cambridge University Press. (1987).
31.Kaiser, J., "Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch," Ph.D Thesis, Technische Hochschule, Munich, German. (1953).
32.Leith, E. N. and Upatnieks, J., “Reconstructed Wavefronts and Communication Theory,” Journal of the Optical Society of America., Vol. 52, p 1123-1130 (1962).
33.Lajtai, E.Z., ”Mechanics of Second Order Faults and Tension Gashes,” Geological Society of America Bulletin. Vol. 80, p 225-227 (1969).
34.Landis, C., "Automated Determination of First P-wave Arrival and Acoustic Emission Source Location," Journal of Acoustic Emission, Vol. 10, No. 1-2, p s97-s103 (1991/1992).
35.Leith, E. N. and Upatnieks, J., “Reconstructed wavefronts and communication theory,” Journal of the Optical Society of America., Vol. 52, pp.1123-1130 (1962).
36.Lin, S. T., Hsieh, C. T. and Hu, C. P., "Two Holographic Blind-hole methods for measuring residual stress." Exp. Mech., Vol. 34, p 141-147 (1994).
37.Maji, A. K., "Acoustic Emissions from Reinforced Concrete," Experimental Mechanics, Vol. 34, No. 4, p 379-388 (1994).
38.Maji, A. K., Wang, J. L. and Lovato, J., "Electronic Speckle Pattern Interferometry for Fracture Mechanics Testing," Experimental Techniques, Vol. 15, No. 3, p 19-23 (1991).
39.Mishnaevsky(Jr.), L. L., "Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A Review," International Journal of Rock Mechanics and Mining Sciences. & Geomech. Abstr., Vol. 32, No. 8, p 763-766 (1995).
40.Mohr, O., “Welche Umstande Bedingen Die Elastizitatsgrenze Und Den Bruch Eines Materiales,” Zeitschrift des Vereines Deutscher Ingenieure, Vol. 44, p 1524-1530 (1900).
41.Ohtsu, M., "Acoustic Emission Characteristics of Concrete and Fundamental Mechanisms," Ph. D. Thesis, Kyoto University, Japan. (1982).
42.Rowe, P. W., Barden, I. and Lee, I. K., ”Energy Components During the Triaxial Cell and Direct Shear Test,” Geotechnique, Vol. 14, p 247-261 (1964).
43.Stimpson B., ”Modeling for Engineering Rock Mechanics,” International Journal of Rock Mechanics and Mining Sciences. Vol. 7, p 77-121 (1970).
44.Timoshenko, S. P. and Goodier. J. N., Theory of Elasticity,3rd ed., New York, McGraw-Hill.
45.Yang, Z. Y., “Qualitative Study on the Regularly Stick-Slip Shear Behavior of Ellipitical Particles,” Tamkang Journal of Science and Engineering, Vol. 1, No. 1, p 14-19 (1998).

QR CODE