簡易檢索 / 詳目顯示

研究生: 彭柏憲
Po-Hsien Peng
論文名稱: 離子奈米通道薄膜在滲透能源轉換應用之優化研究
Study of Optimizing the Osmotic Power Conversion in Ion-Nanochannel Membranes
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 陳士勛
Shih-Hsun Chen
郭紹偉
Shiao-Wei Kuo
童國倫
Kuo-Lun Tung
葉禮賢
Li-Hsien Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 奈米流體離子傳輸離子選擇性離子電流整流陽極氧化鋁鹽差梯度能
外文關鍵詞: Nanofluidics, Ion transport, Ion selectivity, Ion current rectification, Anodic aluminum oxide, Salinity gradient power
相關次數: 點閱:237下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在現代,科技與工業技術的進步造成人們對能源的需求顯著的提升。由於傳統燃燒生質燃料產生的汙染問題以及其可預見之耗盡皆促使各種新興的可再生能源獲取方式的開發。其中,藍色能源,亦即由海洋中產出的能源引發了國際間化學與材料領域科學家們的關注。而因為廣泛存在於世界上之海水/淡水交界以及對環境友善的特性,能將鹽濃度差透過離子選擇膜轉換為電能而不會造成汙染的滲透能源轉換在近年來受到了越來越多的關注。在下一個世代的滲透能源轉換中,結構有序且具高離子選擇性與離子二極體行為之離子選擇膜因為上述之性質可將系統內之離子電流放大,儼然成為了提高效能的關鍵。科學家們以上述之性質為依據,已開發了多種不同的異質離子二極體薄膜應用於滲透能源轉換,然而目前文獻中以回報之最大轉換功率密度仍無法達到可應用於商業運轉的基準(5 W/m2)。與以前的研究主要關注於離子選擇層不同,本研究將關注點轉移到了異質膜的支撐層上。受細胞膜中生物離子通道的啟發,我們開發了一種基於氧化鋁離子-納米通道薄膜(INM)的新型支撐層。通過大量的參數研究(例如,離子通道長度,鹽度梯度和納米通道幾何形狀的影響),我們發現經優化後單純的離子奈米通道支撐層在合成海水與淡水之鹽度差中可提取較大多數最先進的離子二極體薄膜為高之3.67 W/m2的功率密度。我們相信,離子-奈米通道薄膜支撐層的開發將對滲透能源轉換達到商業化基準的進程中有巨大的潛力。


The advance in modern technologies and industries have significantly increased the demand of energy. Due to the limited fossil fuel and serious pollution problems caused by the traditional burning of biomass fuels and their predictable depletion, various of renewable energy sources have been developed. Among them, blue energy, power generated from sea water, has attracted explosive interests from international communities ranging from chemical to material sciences. Osmotic power conversion, in which a salinity gradient across an ion selective membrane can be converted into electricity without involving chemical pollutants, is one type of blue energies and recently receives growing attention because of its environmentally friendly characteristics and the widely existence of sea water/fresh water junctions in the world. Towards next-generation high-performance osmotic power, it has been shown that the keys are to exploit the membranes with ordered structure, highly ion selectivity, and ionic diode behavior that is able to amplify ionic current of the system. To attain this goal, there have been several attempts in developing various kinds of heterogeneous ionic diode membranes for osmotic power conversion. However, the maximum power densities reported in the literatures are still below the commercial benchmark (5 W/m2). Different from previous studies focusing primarily on the ion selective layer, this study turns the focus into the supporting substrate layer of the heterogeneous membrane. Inspired by biological ion channels in the cell membrane, we develop a new type of substrate layer based on the alumina ion-nanochannels membrane (INM). Through a large number of parametric studies (e.g., the influences of ion-channel length, salinity gradients and nanochannel geometry), it is found that the bare INM can achieve a power density as high as 3.67 W/m2 by mixing synthetic seawater and river water, higher than most of the state-of-the-art ionic-diode-membrane-based osmotic power generators. It is believed that the INM developed is of high potential in promoting the osmotic power across the commercialization benchmark.

中文摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.3 研究動機 6 第二章 原理機制 8 2.1 滲透能源轉換(鹽差梯度能) 8 2.2 電雙層 10 2.3 離子選擇性 13 2.4 離子電流整流 13 第三章 實驗設備與方法 17 3.1 實驗藥品與設備 17 3.1.1 實驗藥品 17 3.1.2製程設備 18 3.1.3 實驗與分析儀器 19 3.2 實驗方法 20 3.2.1 離子-奈米通道薄膜製備方法 20 3.2.2 滲透能源轉換效率量測實驗架設 22 3.3.3 離子-奈米通道之滲透能源轉換量測 24 第四章 理論模擬 25 4.1 系統描述 25 4.2 主控方程式組 26 4.2.1 Nernst-Planck方程組 26 4.2.2 Poisson方程組 27 4.3 邊界條件 27 4.4 系統離子電流計算 29 第五章 結果與討論 30 5.1 離子-奈米通道薄膜之結構分析 30 5.1.1 離子奈米-通道薄膜初始結構 30 5.1.2 蝕刻時間對離子奈米-通道薄膜結構之影響 31 5.2 離子-奈米通道薄膜之離子傳輸行為分析 32 5.2.1 實驗結果 32 5.2.1.1 離子濃度之影響 32 5.2.1.2 蝕刻時間之影響 33 5.2.2 理論模擬結果 33 5.2.3 實驗與理論模擬數據比對 33 5.3 滲透能源轉換效能結果 34 5.3.1 離子通道長度對轉換效能的影響 34 5.3.2 離子通道長度對實際功率密度輸出之影響 37 5.3.3 奈米通道長度對轉換效能的影響 38 5.3.4 奈米通道長度對實際功率密度輸出之影響 39 5.3.5 奈米通道孔徑對轉換效能的影響 39 5.3.6 奈米通道孔徑對實際功率密度輸出之影響 40 5.3.7 背景機制解釋 41 第六章 結論 74 參考文獻 76

[1] Touati, K.; Schiestel, T., Evaluation of the potential of osmotic energy as renewable energy source in realistic conditions. Energy Procedia 2013, 42, 261-269.
[2] Długołȩcki, P.; Gambier, A.; Nijmeijer, K.; Wessling, M., Practical potential of reverse electrodialysis as process for sustainable energy generation. Environ. Sci. Technol. 2009, 43, 6888-6894.
[3] Li, X. H.; Jin, X. D.; Zhao, N. N.; Angelidaki, I.; Zhang, Y. F., Novel bio-electro-fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresour. Technol. 2017, 228, 322-329.
[4] Mei, Y.; Tang, C. Y., Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications. J. Membr. Sci. 2017, 539, 305-312.
[5] Blaabjerg, F.; Ma, K., Future on power electronics for wind turbine systems. IEEE Trans. Emerg. Sel. Topics Power Electron. 2013, 1, 139-152.
[6] Sleiti, A. K., Tidal power technology review with potential applications in Gulf Stream. Renew. Sust. Energ. Rev. 2017, 69, 435-441.
[7] Rudd, J. W. M.; Hecky, R. E.; Harris, R.; Kelly, C. A., Are hydroelectric reservoirs significant sources of greenhouse gases. Ambio 1993, 22, 246-248.
[8] Farfan, J.; Breyer, C., Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. J. Clean. Prod. 2017, 141, 370-384.
[9] Post, J. W.; Veerman, J.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Nymeijer, K.; Buisman, C. J. N., Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 2007, 288, 218-230.
[10] Brauns, E., Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output. Desalination 2009, 237, 378-391.
[11] Alvarez-Silva, O.; Osorio, A. F., Salinity gradient energy potential in Colombia considering site specific constraints. Renew. Energ. 2015, 74, 737-748.
[12] Barbier, E., Geothermal energy technology and current status: an overview. Renew. Sust. Energ. Rev. 2002, 6, 3-65.
[13] Kühlbrandt, W., Bacteriorhodopsin — the movie. Nature 2000, 406, 569-570.
[14] Xu, J.; Lavan, D. A., Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol 2008, 3, 666-670.
[15] Lumpkin, E. A.; Caterina, M. J., Mechanisms of sensory transduction in the skin. Nature 2007, 445, 858-865.
[16] Gouaux, E.; MacKinnon, R., Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461-1465.
[17] Zhang, Z.; Wen, L.; Jiang, L., Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 2018, 47, 322-356.
[18] Guler, E.; Zhang, Y. L.; Saakes, M.; Nijmeijer, K., Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChem 2012, 5, 2262-2270.
[19] Yu, Y.; Nakano, M.; Ikeda, T., Directed bending of a polymer film by light. Nature 2003, 425, 145-145.
[20] Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
[21] Chen, Q.; Shen, Y.; Zhang, S.; Zhang, Q. M., Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Sci 2015, 45, 433-458.
[22] Harrell, C. C.; Siwy, Z. S.; Martin, C. R., Conical nanopore membranes: controlling the nanopore shape. Small 2006, 2, 194-198.
[23] Spohr, R., Status of ion track technology—Prospects of single tracks. Radiat. Meas. 2005, 40, 191-202.
[24] Kim, J.; Kim, S. J.; Kim, D.-K., Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores. Energy 2013, 51, 413-421.
[25] Yeh, L.-H.; Chen, F.; Chiou, Y.-T.; Su, Y.-S., Anomalous pH-dependent nanofluidic salinity gradient power. Small 2017, 13, 1702691.
[26] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L., High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
[27] Cao, L.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S.; Wang, Y.; Jiang, L.; Zhu, D., Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environ. Sci. 2011, 4, 2259-2266.
[28] Huang, X.; Zhang, Z.; Kong, X.-Y.; Sun, Y.; Zhu, C.; Liu, P.; Pang, J.; Jiang, L.; Wen, L., Engineered PES/SPES nanochannel membrane for salinity gradient power generation. Nano Energy 2019, 59, 354-362.
[29] Xin, W.; Zhang, Z.; Huang, X.; Hu, Y.; Zhou, T.; Zhu, C.; Kong, X.-Y.; Jiang, L.; Wen, L., High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 2019, 10, 3876.
[30] Yang, H.-C.; Xie, Y.; Hou, J.; Cheetham, A. K.; Chen, V.; Darling, S. B., Janus membranes: Creating asymmetry for energy efficiency. Adv. Mater. 2018, 30, 1801495.
[31] Pattle, R. E., Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 1954, 174, 660-660.
[32] WEINSTEIN, J. N.; LEITZ, F. B., Electric power from differences in salinity: the dialytic battery. Science 1976, 191, 557-559.
[33] Suda, F.; Matsuo, T.; Ushioda, D., Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water. Energy 2007, 32, 165-173.
[34] Veerman, J.; Saakes, M.; Metz, S. J.; Harmsen, G. J., Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 2009, 327, 136-144.
[35] Kim, D.-K.; Duan, C.; Chen, Y.-F.; Majumdar, A., Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid Nanofluidics 2010, 9, 1215-1224.
[36] Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L., Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 2010, 20, 1339-1344.
[37] Fang, W.; Huang, Q.; Huang, S. Z.; Yang, J.; Meng, E. H.; Li, Y. Y., Optimal sizing of utility-scale photovoltaic power generation complementarily operating with hydropower: A case study of the world's largest hydro-photovoltaic plant. Energy Convers. Manag. 2017, 136, 161-172.
[38] Zhang, Z.; Kong, X.-Y.; Xiao, K.; Liu, Q.; Xie, G.; Li, P.; Ma, J.; Tian, Y.; Wen, L.; Jiang, L., Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 2015, 137, 14765-14772.
[39] Li, R.; Jiang, J.; Liu, Q.; Xie, Z.; Zhai, J., Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 2018, 53, 643-649.
[40] Fu, Y.; Guo, X.; Wang, Y.; Wang, X.; Xue, J., An atomically-thin graphene reverse electrodialysis system for efficient energy harvesting from salinity gradient. Nano Energy 2019, 57, 783-790.
[41] Lee, S. W.; Kim, H. J.; Kim, D. K., Power generation from concentration gradient by reverse electrodialysis in dense silica membranes for microfluidic and nanofluidic systems. Energies 2016, 9, 49.
[42] Ji, J.; Kang, Q.; Zhou, Y.; Feng, Y.; Chen, X.; Yuan, J.; Guo, W.; Wei, Y.; Jiang, L., Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 2017, 27, 1603623.
[43] Chen, K. X.; Yao, L. N.; Yan, F.; Liu, S. S.; Yang, R. J.; Su, B., Thermo-osmotic energy conversion and storage by nanochannels. J. Mater. Chem. A 2019, 7, 25258-25261.
[44] Sui, X.; Zhang, Z.; Li, C.; Gao, L.; Zhao, Y.; Yang, L.; Wen, L.; Jiang, L., Engineered nanochannel membranes with diode-like behavior for energy conversion over a wide pH range. ACS Appl. Mater. Interfaces 2019, 11, 23815-23821.
[45] Xiao, T.; Zhang, Q.; Jiang, J.; Ma, J.; Liu, Q.; Lu, B.; Liu, Z.; Zhai, J., pH-resistant nanofluidic diode membrane for high-performance conversion of salinity gradient into electric energy. Energy Technol. 2019, 7, 1800952.
[46] Zhang, Z.; He, L.; Zhu, C.; Qian, Y.; Wen, L.; Jiang, L., Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.
[47] Xiao, T.; Ma, J.; Liu, Z.; Lu, B.; Jiang, J.; Nie, X.; Luo, R.; Jin, J.; Liu, Q.; Li, W.; Zhai, J., Tunable rectifications in nanofluidic diodes by ion selectivity of charged polystyrene opals for osmotic energy conversion. J. Mater. Chem. A 2020, 8, 11275-11281.
[48] Kohonen, M. M.; Karaman, M. E.; Pashley, R. M., Debye length in multivalent electrolyte solutions. Langmuir 2000, 16, 5749-5753.
[49] Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 2002, 35, 2380-2388.
[50] Schoch, R. B.; Han, J.; Renaud, P., Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839-883.
[51] Cheng, L. J.; Guo, L. J., Nanofluidic diodes. Chem. Soc. Rev. 2010, 39, 923-938.
[52] Siwy, Z. S., Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
[53] Yeh, L.-H.; Zhang, M.; Qian, S., Ion transport in a pH-regulated nanopore. Anal. Chem. 2013, 85, 7527-7534.
[54] Ma, Y.; Yeh, L.-H.; Qian, S., pH-regulated ionic conductance in a nanopore. Electrochem. Commun. 2014, 43, 91-94.
[55] Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic selectivity of single nanochannels. Nano Lett. 2008, 8, 1978-1985.
[56] Zhang, M.; Ai, Y.; Kim, D.-S.; Jeong, J.-H.; Joo, S. W.; Qian, S., Electrophoretic motion of a soft spherical particle in a nanopore. Colloids Surf. B 2011, 88, 165-174.
[57] Li, C.-Y.; Ma, F.-X.; Wu, Z.-Q.; Gao, H.-L.; Shao, W.-T.; Wang, K.; Xia, X.-H., Solution-pH-modulated rectification of ionic current in highly ordered nanochannel arrays patterned with chemical functional groups at designed positions. Adv. Funct. Mater. 2013, 23, 3836-3844.
[58] Ma, Y.; Yeh, L.-H.; Lin, C.-Y.; Mei, L.; Qian, S., pH-regulated ionic conductance in a nanochannel with overlapped electric double layers. Anal. Chem. 2015, 87, 4508-4514.
[59] Pedimonte, B. J.; Moest, T.; Luxbacher, T.; von Wilmowsky, C.; Fey, T.; Schlegel, K. A.; Greil, P., Morphological zeta-potential variation of nanoporous anodic alumina layers and cell adherence. Acta Biomater. 2014, 10, 968-974.

QR CODE