簡易檢索 / 詳目顯示

研究生: 黃秉翔
Bing-Siang Huang
論文名稱: 四階飛馳電容無橋圖騰柱功率因數修正器
Four-Level Flying Capacitor Totem-Pole Bridgeless Power Factor Correction
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉邦榮
Pang-Jung Liu
王見銘
Chien-Ming Wang
謝耀慶
Yao-Ching Hsieh
劉益華
Yi-Hua Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 多階層飛馳電容
外文關鍵詞: Flying capacitor Multilevel PFC converter, Zero-crossing current spike
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將介紹四階層飛馳電容圖騰柱功率因數修正器。傳統二階層架構操作於連續導通模式下,硬切損失的關係使得切換頻率受限於低頻切換,因此難以將磁性元件小型化。多階層飛馳電容架構與二階層架構相比能使用較低感值的電感和體積小的陶瓷電容來達到高功率密度。多階層飛馳電容架構採用相移式脈波寬度調變來控制飛馳電容的電壓平衡、增加開關切換點的等效切換頻率並減少電感上的跨壓來降低電感電流漣波。四階層飛馳電容型圖騰柱功率因數修正器因慢速臂開關的輸出電容非線性的特性,在輸入電壓零交越後產生電感電流突波問題,透過數學分析提出合適的控制策略。本論文將比較多階層飛馳式電容架構與多相交錯式架構的差異、說明四階層飛馳電容圖騰柱功率因數修正器的動作原理、同步整流開關與輸入電壓零交越的控制方法及電感電流採樣的考量。本論文最終實現高效率高功率密度之四階層飛馳電容圖騰柱功率因數修正器,其輸入電壓從90 Vrms到230 Vrms、輸出電壓380 V、輸出功率為2.6 kW、峰值效率達99.11 %。


    This dissertation will introduce the four-level flying capacitor totem-pole PFC converter. Traditional two-level topology operates at continuous conduction mode with low switching frequency which is limited by the hard-switching loss and it is hard to minimize the magnetic component. Compared to two-level topology, flying capacitor multilevel (FCML) topology can achieve high power density due to the lower inductance and the small volume size of ceramic capacitor. Phase-shift pulse-width modulation is commonly used in flying capacitor multilevel topologies to achieve the voltage balancing of flying capacitor, increase the equivalent frequency of switching node voltage and reduce the voltage across the inductor. Therefore, the inductor current ripple can be further reduced. Due to the non-linear output capacitance Coss characteristic of MOSFET, the inductor current spike will occur at input voltage zero-crossing region. By derived the equation of current spike in mathematical theory to propose the suitable control strategy for four-level flying capacitor bridgeless totem-pole PFC converter. The detailed comparison of the current ripple between flying capacitor multilevel topology and multi-phase interleaved topology, the circuit operating principle, the control method of synchronous rectifier, the control strategy at input voltage zero-crossing and the considerations of the inductor current sensing are discussed. The four-level flying capacitor bridgeless totem-pole PFC converter with high power density and high efficiency is implemented and the input voltage range is from 90 Vrms to 230 Vrms. The maximum output power is tested up to 2.6 kW and the peak efficiency with 99.11% is achieved.

    摘 要 Abstract 誌 謝 目 錄 圖索引 表索引 符號索引 第一章 緒論 1.1研究動機與目的 1.2論文大綱 第二章 多階層圖騰柱功率因數修正器架構 2.1多階飛馳電容架構 2.2多階飛馳電容架構與多相交錯式架構之分析 2.3 四階層圖騰柱功率因數修正器 2.3.1動作區間 2.3.2飛馳電容分析 第三章 電路設計 3.1功率元件設計 3.1.1電感設計 3.1.2開關選擇 3.1.3飛馳電容設計 第四章 四階層飛馳電容圖騰柱功率因數修正器控制策略 4.1 四階飛馳電容升壓型轉換器之電感電流取樣 4.1.1 電感電流轉換取樣點問題 4.1.2 平均電流取樣策略 4.2同步整流開關控制問題 4.3零交越電感電流突波控制問題 4.3.1動作原理與Coss非線性特性造成的影響 4.3.2 零交越軟啟動策略 4.4軟體規劃 4.4.1軟體設計 4.4.2 PFC狀態機 第五章 電路模擬與實驗結果 5.1模擬電路圖 5.1.1模擬波形 5.2 實驗結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] ENERGY STAR Program Requirements for Computer Servers. [Online]. Available: https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.0%20Computer%20Servers%20Program%20Requirements_0.pdf
    [2] 80 PLUS Test Protocol, Generalized Test Protocol for Calculating the Energy Efficiency of Internal Ac-Dc and Dc-Dc Power Supplies [Online]. Available: https://plugloadsolutions.com/docs/collatrl/print/Generalized_Int ernal_Power_Supply_Efficiency_Test_Protocol_R6.7.pdf
    [3] Wikipedia IEC 61000-3-2. [Online]. Available: https://en.wikipedia.org/wiki/IEC_61000-3-2
    [4] “Power Factor Correction Handbook”, ON Semiconductor, 2014.
    [5] L. Xue, Z. Shen, D. Boroyevich and P. Mattavelli, "GaN-based high frequency totem-pole bridgeless PFC design with digital implementation," 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 759-766, doi: 10.1109/APEC.2015.7104435.
    [6] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2015, pp. 1-8.
    [7] Infineon Evaluation Boards [Online]. Available: https://www.infineon.com/cms/en/product/evaluation-boards/eval_2500w_pfc_gan_a/
    [8] Infineon Evaluation Boards. [Online]. Available: https://www.infineon.com/dgdl/Infineon-Evaluationboard_EVAL_3K3W_TP_PFC_SIC-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4626fc1ce0b016fc2ae66e20040
    [9] M. M. Ul Alam, W. Eberle, and F. Musavi, “A hybrid resonant bridgeless AC-DC power factor correction converter for off-road and neighborhood electric vehicle battery charging,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 1641–1647, 2014.
    [10] W. Zhang, S. Member, G. Feng, S. Member, Y. Liu, and S. Member, “A Digital Power Factor Correction (PFC) Control Strategy Optimized for DSP,” IEEE Trans. On Power Electronics, vol. 19, no. 6, pp. 1474–1485, 2004.
    [11] Jae-Hyun Kim, Gun-Woo Moon and Jae-Kuk Kim, "Zero-voltage-switching totem-pole bridgeless boost rectifier with reduced reverse-recovery problem for power factor correction," Proceedings of The 7th International Power Electronics and Motion Control Conference, 2012, pp. 1044-1048.
    [12] K. S. Muhammad and Dylan Dah-Chuan Lu, "Two-switch ZCS totem-pole bridgeless PFC boost rectifier," 2012 IEEE International Conference on Power and Energy (PECon), 2012, pp. 1-6.
    [13] GaN System Application Notes. [Online]. Available:https://gansystems.com/wp-content/uploads/2021/07/GN001_An-Introduction-to-GaN-E-HEMTs-210720.pdf
    [14] A. Lidow, J. Strydom, M. De Rooij, and D. Reusch, GaN Transistors for Efficient Power Conversion. Hoboken, NJ, USA: Wiley, 2014.
    [15] T. A. Meynard and H. Foch, “Multi-level conversion: High voltage choppers and voltage-source inverters,” in Proc. IEEE Power Electron. Spec. Conf., 1992, pp. 397–403.
    [16] Y. Lei et al., “A 2-kw single-phase seven-level flying capacitor multilevel inverter with an active energy buffer,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8570–8581, Nov. 2017.
    [17] I. Moon, C. F. Haken, E. K. Saathoff, E. Bian, Y. Lei, S. Qin, D. Chou, S. Sedig, W. H. Chung, and R. C. N. Pilawa-Podgurski, “Design and implementation of a 1.3 kw, 7-level flying capacitor multilevel ac-dc converter with power factor correction,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 67–73, March 2017.
    [18] A. Stillwell and R. C. N. Pilawa-Podgurski, “A 5-level flying capacitor multi-level converter with integrated auxiliary power supply and start-up,” IEEE Transactions on Power Electronics, pp. 1–1, 2018.
    [19] A. Stillwell, E. Candan, and R. C. N. Pilawa-Podgurski, “Active voltage balancing in flying capacitor multi-level converters with valley current detection and constant effective duty cycle control,” IEEE Transactions on Power Electronics, pp. 1–13, 2019.
    [20] Z. Ye and R. C. N. Pilawa-Podgurski, “A power supply circuit for gate driver of GaN-based flying capacitor multi-level converters,” in 2016 IEEE 4th Workshop on WideBandgap Power Devices and Applications (WiPDA), Nov 2016, pp. 53–58.
    [21] S. Qin, Z. Liao, Z. Ye, D. Chou, N. Brooks, and R. C. N. Pilawa-Podgurski, “A 99.1%, 490 w/in3 power factor correction front end based on a 7-level flying capacitor multilevel converter,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2018, pp. 729–736.
    [22] N. Brooks, Z. Liao, and R. C. N. Pilawa-Podgurski, “A digital implementation of pll-based control for the series-stacked buffer in front-end pfc rectifiers,” 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), 2018.
    [23] T. T. Vu and G. Young, "Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 2016, pp. 1835-1841.
    [24] Q. Huang, Q. Ma, P. Liu, A. Q. Huang, and M. de Rooij, “3kW four-level flying capacitor totem-pole bridgeless PFC rectifier with 200 V GaN devices,” in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2019, pp. 81–88.
    [25] T. A. Meynard and H. Foch, “Multi-level conversion: High voltage choppers and voltage-source inverters,” in Proc. IEEE Power Electron. Spec. Conf., 1992, pp. 397–403.
    [26] A. Stillwell and R. C. N. Pilawa-Podgurski, “A 5-level flying capacitor multi-level converter with integrated auxiliary power supply and start-up,” IEEE Transactions on Power Electronics, pp. 1–1, 2018.
    [27] C. Marxgut, J. Biela, and J. W. Kolar, “Interleaved Triangular Current Mode ( TCM ) Resonant Transition , Single Phase PFC Rectifier with High Efficiency and High Power Density.”, IEEE ECCE Asia, pp. 1725-1732, 2010.
    [28] Efficient Power Conversion, EPC2034C Datasheet [Online] Available:https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2034C_datasheet.pdf
    [29] “Enhancement-mode gallium nitride technology,” tech. rep., Efficient power conversion, 2016. [Online] www.epc-co.com.
    [30] TDK, C5750X6S2W225K250KA Datasheet [Online] Available: https://product.tdk.com/en/search/capacitor/ceramic/mlcc/info?part_no=C5750X6S2W225K250KA
    [31] Xue, L. (2015). GaN-Based High-Efficiency, High-Density, HighFrequency Battery Charger for Plug-in Hybrid Electric Vehicle. Ph.D. Dissertation, Virginia Polytechnic Institute and State University
    [32] R. A. Siddique, R. Khandekar, P. Ksiazek, and J. Wang, “Investigation of zero-crossing common-mode noise and current spike in GaN based totem-pole PFC,” in Proc. IEEE Conf. Elect. Comput. Eng., 2018, pp. 1– 5.
    [33] B. Zhou, “CCM totem pole bridgeless PFC with ultra fast IGBT,” Virginia Tech, Blacksburg, VA, USA, 2014.
    [34] Infineon, IPT60R022S7XTMA1 Datasheet [Online] Available: https://www.mouser.tw/datasheet/2/196/Infineon_IPT60R022S7_DataSheet_v02_01_EN-1622504.pdf

    無法下載圖示 全文公開日期 2032/11/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2042/11/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE