簡易檢索 / 詳目顯示

研究生: 孫亦增
Yi-Zeng Sun
論文名稱: 利用真空電漿製備具有羧基及胺基之多層薄膜並應用於生醫材料
Preparation of carboxylic and amine functionalities multilayer thin films by vacuum plasma system for biomedical applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 陳克紹
Ko-Shao Chen
王宗仁
Tsung-Jen Wang
李振綱
Cheng-Kang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 117
中文關鍵詞: 隱形眼鏡抗蛋白質沾黏丙烯酸丙烯胺生物相容性
外文關鍵詞: Contact lenses, Antifouling, Acrylic acid, Allylamine, Biocompatibility
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要由兩個部分組成,第一部分論文之研究目標為,分析臨床大尺寸直徑隱形眼鏡蛋白質貼附對於病患的影響,分析組別包含三個群組,分別為:正常角膜、圓錐角膜、術後角膜。利用X-射線光電子能譜儀 (XPS),分析配戴後之隱形眼鏡表面化學元素組成與含量,並以掃描式電子顯微鏡 (SEM) 以及原子力顯微鏡 (AFM),觀測硬式隱形眼鏡表面形態以及粗糙度。第二部分之研究為,製備具抗蛋白質沾黏之多層高分子薄膜 (multilayer polymers thin films),透過真空電漿聚合 (vacuum plasma polymerization) 並控制不同沉積時間與每層膜之厚度,以丙烯酸 (acrylic acid, AAc) 以及丙烯胺 (allylamine, AAm) 作為電漿聚合之前驅物,沉積於基材表面,形成ppAAc (plasma polymerized acrylic acid) 以及ppAAm (plasma polymerized allylamine) 高分子薄膜,以橢圓偏光儀 (ES)、水接觸角量測儀 (WCA)、全反射式傅立葉紅外線光譜儀 (ATR-FTIR) 等儀器,分析高分子薄膜之化學結構、表面親疏水性質以及薄膜厚度。
在論文第一部分,從XPS的分析結果發現,隱形眼鏡經三組受試者配戴六個月後,鏡片本身Si2p的波峰皆消失,此一結果顯示鏡片表面已被沉澱物所覆蓋,而這些沉澱物的內容物可能包含:蛋白質、脂質以及其他有機無機物等。另外,經角膜手術後族群配戴隱形眼鏡六個月後,可觀察到明顯的N1s之訊號,且N1s含量相較於其他族群之分析結果較高,因此,可推測角膜手術後之族群會分泌較多的蛋白質在隱形眼鏡上,使得N1s含量較高。
在論文第二部分,經由真空電漿聚合AAc以及AAm高分子薄膜,並應用於抗蛋白質沾黏。結果顯示在BSA貼附的組別中,當沉積pp(AAm10/AAc10)8時,有最低的蛋白質貼附量約1.5 μg/cm2,然而在lysozyme的組別中,當沉積pp(AAm10/AAc10)4時,有最低的蛋白質貼附量約1.2 μg/cm2。從結果中可得知沉積pp(AAm/AAc) 兩性高分子薄膜,可有效抗蛋白質沾黏之效果。


Biomaterials such as contact lenses and biosensors are commonly suffered from biofouling problems, which lead to the product contamination, equipment dysfunction, and corrosion. This thesis was divided into two parts, at the first part, the scleral contact lenses were used as analytical material. The chemical composition, surface roughness, and surface morphology of contact lenses were characterized by XPS, AFM, and SEM, respectively. For the second part, zwitterionic polymers were synthesized by vacuum plasma polymerization. The feasibility to deposit positively charged allylamine (AAm) and negatively charged acrylic acid (AAc) monomers on different substrates by plasma-assisted polymerization technique was demonstrated for bio-related applications.
For the first part of the thesis, the result from the XPS shows that the characteristic peaks of Si2p, which belong to contact lenses, disappeared after wearing for six months. And the characteristic peaks of N1s, which belong to protein, can be observed after wearing. The reason is due to the contact lenses surface was covered by the contaminants of proteins, lipids, organic and inorganic substances.
For the second part of the thesis, the feasibility to deposit positively charged AAm and negatively charged AAc monomers on different substrates by plasma-assisted polymerization technique was demonstrated for bio-related applications. The results of protein adsorption indicated that the sample pp(AAm10/AAc10)8 shows the lowest amount of protein attached onto the surface, which is 1.5 μg/cm2 by using BSA (bovine serum albumin). On the other hand, the pp(AAm10/AAc10)4 shows the lowest amount of protein attached onto the surface, which is 1.2 μg/cm2 by using lysozyme. The results show that zwitterionic polymer thin film pp(AAm/AAc) possessing good antifouling property.

摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 1 第二章 文獻回顧 3 2.1 電漿簡介 3 2.1.1 電漿定義 3 2.1.2 電漿聚合 4 2.1.3 電漿聚合理論 4 2.1.4 電漿薄膜沉積製程 7 2.2 生物沾黏 11 2.2.1 抗沾黏高分子 12 2.2.2 兩性高分子 13 第三章 研究方法與儀器原理 20 3.1 實驗藥品 20 3.1.1 大直徑高透氧硬式隱形眼鏡材料性質 20 3.1.2 大直徑高透氧硬式隱形眼鏡試驗族群分類 21 3.1.3 電漿聚合前驅物 21 3.1.4 蛋白質貼附所需的藥品 21 3.1.5 細胞培養所需的藥品 22 3.1.6 配置LDH反應劑所需藥品 22 3.2 實驗方法 23 3.2.1 電漿系統 23 3.2.2 薄膜沉積 25 3.2.3 物理及化學性質分析 27 3.2.4 細胞貼附測試 27 3.2.5 蛋白質貼附測試 28 3.3 儀器原理及方法 29 3.3.1 橢圓偏光儀 (Spectroscopic ellipsometer, SE) 30 3.3.2 水接觸角量測儀 (Water contact angle measurement device, WCA) 30 3.3.3 全反射式傅立葉紅外線光譜儀 (Attenuated total reflection Fourier transform infrared spectroscopy, ATR-FTIR) 32 3.3.4 原子力顯微鏡 (Atomic force microscopy, AFM) 32 3.3.5 X-射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 33 3.3.6 統計學分析 (statistical analysis) 34 3.4 樣本之命名 34 3.4.1 電漿聚合薄膜樣本之命名 34 第四章 結果與討論 38 4.1 大直徑隱形眼鏡各族群配戴6個月前後相關參數 38 4.1.1 各族群鏡片基弧變化量 38 4.1.2 各族群鏡片球面度數變化量 39 4.1.3 各族群鏡片柱面度數變化量 39 4.2 大直徑隱形眼鏡各族群配戴6個月前後光穿透率 40 4.3 大直徑隱形眼鏡各族群配戴6個月前後表面親疏水性質 40 4.4 大直徑隱形眼鏡各族群配戴6個月前後表面化學鍵結組成之影響 41 4.5 大直徑隱形眼鏡各族群配戴6個月前後元素組成 41 4.6 電漿沉積參數對ppAAc及ppAAm特性之研究 42 4.6.1 電漿功率對ppAAc親疏水性之影響 42 4.6.2 施加功率對ppAAc之表面化學鍵結組成之影響 43 4.6.3 電漿沉積時間及施加功率對ppAAm之厚度影響 43 4.6.4 電漿沉積時間及施加功率對ppAAm親疏水性之影響 44 4.6.5 電漿沉積時間及施加功率對ppAAm表面化學鍵結組成之影響 44 4.7 在固定沉積時間下對pp(AAc+AAm)、pp(AAc/AAm) 及pp(AAm/AAc) 薄膜特性之研究 45 4.7.1 電漿沉積時間對pp(AAc+AAm)、pp(AAc/AAm) 及pp(AAm/AAc) 薄膜厚度之影響 45 4.7.2 對pp(AAc+AAm)、pp(AAc/AAm) 及pp(AAm/AAc) 薄膜親疏水性之影響 46 4.7.3 對pp(AAc+AAm)、pp(AAc/AAm) 及pp(AAm/AAc) 薄膜表面化學鍵結組成 46 4.7.4 探討pp(AAc+AAm)、pp(AAc/AAm) 及pp(AAm/AAc) 薄膜對生物相容性之影響 47 4.8 在固定電漿沉積厚度下最外層為ppAAc多層薄膜特性之研究 48 4.8.1 電漿沉積時間對最外層為ppAAc多層薄膜厚度之影響 48 4.8.2 薄膜厚度對最外層為ppAAc多層薄膜親疏水性之影響 48 4.8.3 薄膜厚度對最外層為ppAAc多層薄膜表面化學鍵結組成之影響 48 4.8.4 薄膜厚度對最外層為ppAAc多層薄膜元素組成 49 4.8.5 探討最外層為ppAAc多層薄膜對生物相容性之影響 49 4.8.6 探討最外層為ppAAc多層薄膜對BSA蛋白質貼附影響 50 4.8.7 探討最外層為ppAAc多層薄膜對lysozyme蛋白質貼附影響 51 4.9 在固定電漿沉積厚度下最外層為ppAAm多層薄膜特性之研究 51 4.9.1 電漿沉積時間對最外層為ppAAm多層薄膜厚度之影響 51 4.9.2 薄膜厚度對最外層為ppAAm多層薄膜親疏水性之影響 51 4.9.3 薄膜厚度對最外層為ppAAm多層薄膜表面化學鍵結組成之影響 52 4.9.4 薄膜厚度對最外層為ppAAm多層薄膜元素組成 52 4.9.5 探討最外層為ppAAm多層薄膜對生物相容性之影響 53 4.9.6 探討最外層為ppAAm多層薄膜對BSA蛋白質貼附影響 54 4.9.7 探討最外層為ppAAm多層薄膜對lysozyme蛋白質貼附影響 54 第五章 結論 97 5.1 隱形眼鏡配戴使用後的表面分析 97 5.2 含羧基及胺基多層薄膜之表面分析、抗蛋白質沾黏及生物相容性 98 第六章 參考文獻 99

1. Lu, T.; Qiao, Y.; Liu, X., Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus 2012, 2 (3), p. 325-336.
2. Choi, Y.-H.; Ko, H.; Lee, G.-Y.; Chang, S.-Y.; Chang, Y. W.; Kang, M.-J.; Pyun, J.-C., Development of a sensitive SPR biosensor for C-reactive protein (CRP) using plasma-treated parylene-N film. Sensors and Actuators B: Chemical 2015, 207, p. 133-138.
3. Lopes, B. B.; Rangel, R. C. C.; Antonio, C. s. A.; Durrant, S. F.; Cruz, N. C.; Rangel, E. C., Mechanical and Tribological Properties of Plasma Deposited a-C:H:Si:O Films. In Nanoindentation in Materials Science, Nemecek, J., Ed. InTech: Rijeka, 2012; p Ch. 08.
4. Brinkmann, N.; Sommer, D.; Micard, G.; Hahn, G.; Terheiden, B., Electrical, optical and structural investigation of plasma-enhanced chemical-vapor-deposited amorphous silicon oxynitride films for solar cell applications. Solar Energy Materials and Solar Cells 2013, 108, p. 180-188.
5. Muguruma, H.; Hiratsuka, A.; Karube, I., Thin-Film Glucose Biosensor Based on Plasma-Polymerized Film:  Simple Design for Mass Production. Analytical Chemistry 2000, 72 (11), p. 2671-2675.
6. Williams, D. F., A model for biocompatibility and its evaluation. Journal of Biomedical Engineering 1989, 11 (3), p. 185-191.
7. Goda, T.; Ishihara, K., Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices 2006, 3 (2), p. 167-174.
8. Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R., Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science 2013, 38 (8), p. 1232-1261.
9. Williams, D. F., On the mechanisms of biocompatibility. Biomaterials 2008, 29 (20), p. 2941-2953.
10. Yasuda, H., Plasma polymerization. Academic Press: 1985.
11. D'Agostino, R.; Favia, P.; Oehr, C.; Wertheimer, M. R., Low-Temperature Plasma Processing of Materials: Past, Present, and Future. Plasma Processes and Polymers 2005, 2 (1), p. 7-15.
12. Inagaki, N., Plasma Surface Modification and Plasma Polymerization. CRC Press: 1996.
13. Willliams, T.; Hayes, M. W., Polymerization in a Glow Discharge. Nature 1966, 209 (5025), p. 769-773.
14. Westwood, A. R., Glow discharge polymerization—I. Rates and mechanisms of polymer formation. European Polymer Journal 1971, 7 (4), p. 363-375.
15. Denaro, A. R.; Owens, P. A.; Crawshaw, A., Glow discharge polymerization—styrene. European Polymer Journal 1968, 4 (1), p. 93-106.
16. Kobayashi, H.; Bell, A. T.; Shen, M., Plasma Polymerization of Saturated and Unsaturated Hydrocarbons. Macromolecules 1974, 7 (3), p. 277-283.
17. Yasuda, H.; Hsu, T., Some aspects of plasma polymerization investigated by pulsed R.F. discharge. Journal of Polymer Science: Polymer Chemistry Edition 1977, 15 (1), p. 81-97.
18. Favia, P.; d’Agostino, R., Plasma treatments and plasma deposition of polymers for biomedical applications. Surface and Coatings Technology 1998, 98 (1), p. 1102-1106.
19. Sang Ho, S.; Campbell, S. A., The effect of composition on surface morphology, formation mechanism and pinhole generation of cosputtered ytterbium silicide. Thin Solid Films 2009, 517 (24), p. 6841-6846.
20. Manabu, G.; Kensuke, S.; Masanori, A., Giant Faraday Rotation of Ce-Substituted YIG Films Epitaxially Grown by RF Sputtering. Japanese Journal of Applied Physics 1988, 27 (8A), p. L1536.
21. Guillén, C.; Montero, J.; Herrero, J., Anatase and rutile TiO2 thin films prepared by reactive DC sputtering at high deposition rates on glass and flexible polyimide substrates. Journal of Materials Science 2014, 49 (14), p. 5035-5042.
22. Liu, X.; Feng, Q.; Bachhuka, A.; Vasilev, K., Surface Modification by Allylamine Plasma Polymerization Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells. ACS Applied Materials & Interfaces 2014, 6 (12), p. 9733-9741.
23. Watkins, L. M.; Lee, A. F.; Moir, J. W. B.; Wilson, K., Plasma-Generated Poly(allyl alcohol) Antifouling Coatings for Cellular Attachment. ACS Biomaterials Science & Engineering 2017, 3 (1), p. 88-94.
24. Kerstetter, J. L.; Gramlich, W. M., Nanometer-scale self-assembly of amphiphilic copolymers to control and prevent biofouling. Journal of Materials Chemistry B 2014, 2 (46), p. 8043-8052.
25. Qayyum, S.; Khan, A. U., Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. MedChemComm 2016, 7 (8), p. 1479-1498.
26. Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R., The impact and control of biofouling in marine aquaculture: a review. Biofouling 2012, 28 (7), p. 649-669.
27. Sin, M.-C.; Chen, S.-H.; Chang, Y., Hemocompatibility of zwitterionic interfaces and membranes. Polymer journal 2014, 46 (8), p. 436-443.
28. Zhao, C.; Li, L.; Wang, Q.; Yu, Q.; Zheng, J., Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates) Grafted Surfaces. Langmuir 2011, 27 (8), p. 4906-4913.
29. Zheng, J.; Li, L.; Chen, S.; Jiang, S., Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers. Langmuir 2004, 20 (20), p. 8931-8938.
30. Liu, L.; Li, W.; Liu, Q., Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2014, 6 (6), p. 599-614.
31. Liu, P.; Huang, T.; Liu, P.; Shi, S.; Chen, Q.; Li, L.; Shen, J., Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. Journal of Colloid and Interface Science 2016, 480, p. 91-101.
32. Sin, M.-C.; Sun, Y.-M.; Chang, Y., Zwitterionic-Based Stainless Steel with Well-Defined Polysulfobetaine Brushes for General Bioadhesive Control. ACS Applied Materials & Interfaces 2014, 6 (2), p. 861-873.
33. Liu, Q.; Singh, A.; Liu, L., Amino Acid-Based Zwitterionic Poly(serine methacrylate) as an Antifouling Material. Biomacromolecules 2013, 14 (1), p. 226-231.
34. Losurdo, M.; Hingerl, K., Ellipsometry at the Nanoscale. Springer Science & Business Media: 2013.
35. Yuan, Y.; Lee, T. R., Contact angle and wetting properties. In Surface science techniques, Springer: 2013; pp 3-34.
36. Lam, S. M.; Tong, L.; Duan, X.; Petznick, A.; Wenk, M. R.; Shui, G., Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. Journal of Lipid Research 2014, 55 (2), p. 289-298.
37. Quinto, G. G.; Campos, M.; Behrens, A., Autologous serum for ocular surface diseases. Arquivos brasileiros de oftalmologia 2008, 71 (6), p. 47-54.
38. Borchman, D.; Foulks, G. N.; Yappert, M. C.; Tang, D.; Ho, D. V., Spectroscopic evaluation of human tear lipids. Chemistry and physics of lipids 2007, 147 (2), p. 87-102.
39. Yan, H.; Frielinghaus, H.; Nykanen, A.; Ruokolainen, J.; Saiani, A.; Miller, A., Thermoreversible lysozyme hydrogels: properties and an insight into the gelation pathway. Soft Matter 2008, 4 (6), p. 1313-1325.
40. Yasuda, H., Magneto luminous chemical vapor deposition. CRC Press: 2011.

無法下載圖示 全文公開日期 2022/08/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE