簡易檢索 / 詳目顯示

研究生: 洪韻茹
Yun-Ju Hung
論文名稱: 聚乙二醇/聚(乙二醇-丙二醇)共聚合物之摻合物與其混合二氧化矽粒子之流變性質研究
Rheological Properties of Poly(ethylene glycol)/Poly(ethylene glycol-ran-propylene glycol) blends mixed with Silica Nanoparticles
指導教授: 洪伯達
Po-Da Hong
口試委員: 蕭育生
Yu-Sheng Hsiao
蔡協致
Hsieh-Chih Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 54
中文關鍵詞: 高分子奈米混摻物雙連續結構二氧化矽奈米粒子雙連續界面堵塞乳液凝膠流變性質小角度光散射
外文關鍵詞: Polymer nanocomposites, bicontinuous structure, silica nanoparticle, Bicontinuous Interfacially Jammed Emulsion Gels, Rheological property, Small angle light scattering
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

失穩分解相分離形成的雙連續結構備受關注並被廣泛利用[1]。有鑒於此,我們在(聚乙二醇/聚乙二醇-丙二醇)共聚物摻合物中並添加自行合成的二氧化矽奈米粒子 (SiNPs) 製造雙連續界面堵塞乳液凝膠(Bicontinuous Interfacially Jammed Emulsion Gels)。我們已經發現在兩項系統中添加奈米粒子可以有效抑制相分離的粗化速度,因而可更深入探究奈米粒子之濃度對摻合物系統型態和流變行為之影響。
相差顯微鏡和小角光散射儀的數據顯示,當奈米粒子加入後雙連續結構的粗化會在相對低溫下停止,而隨著奈米粒子濃度的增加,其停止演化之特徵尺寸越小;在相對高溫時的結構演化則僅有速率的下降而無法被停止,推測隨著溫度升高,除介面張力以外重力亦會做為外加力場影響相分離。流變結果驗證此行為,其顯示樣品為雙連續結構並在實驗相對低溫與低頻率中表現出固體行為,這歸因於奈米粒子網路的形成,且藉由應力鬆弛時間得知網路結構的空間侷限性有關聯。


The bicontinuous structure has caught great attention [1]. In this work, we added self-synthesized silica nanoparticles (SiNPs) to Poly (ethylene glycol)/Poly (ethylene glycol-ran-propylene glycol) blends (PEG/RAN) to fabricate bijels (bicontinuous interfacially jammed emulsion gels). Since we found that the addition of SiNPs could suppress coarsening of PEG/RAN, we could further investigate the effect of various concentrations of nanoparticles and quenching temperatures on the dynamic and rheological behavior of PEG/RAN.
The structural evolution and kinetic behavior of polymer blends were observed by phase contrast microscope (PCM) and time-resolved small angle light scattering (SALS). Adding nanoparticles can jammed the structure at a relatively low temperature. The characteristic size where jamming occurred became smaller as the concentration increases, and the phase separation is dominated by interfacial tension. On the contrary, the structure at a relatively high phase-separation temperature kept growing, speculating that external force, such as gravity, governs. Rheological studies validate this behavior, showing a bicontinuous structure and solid behavior at low temperatures and frequencies, which is attributed to the particle network formation. The relaxation time of the PEG/RAN reveals the relationship to the spatial confinement of the network.

Abstract IV Acknowledge V Contents VI Chart Catalogues VIII Principal Notation XI Chapter 1. Introduction 1 1.1. Bicontinuous Interfacially Jammed Emulsion Gel 1 1.2. Bijel Formation: Spinodal Decomposition 2 1.3. Phase Separation Dynamics 4 1.4. The Factors Affect Phase Separation 5 1.4.1. Interfacial tension 5 1.4.2. Viscosity of polymer 6 1.4.3. Gravity 6 1.5. Rheology of bijel 7 1.6. The Application of bijel 9 1.7. The Purpose of This Thesis 10 Chapter 2. Experimental Section 11 2.1. Materials 11 2.1.1. Synthesizing Silica Nanoparticles 11 2.1.2. Sample Preparation 12 2.2. Experiment Methods 14 2.2.1. Zetasizer 14 2.2.2. Transmission Electron Microscope (TEM) 14 2.2.3. Phase Contrast Microscope (PCM) 14 2.2.4. Time-Resolved Small-Angle Light Scattering (SALS) 15 2.3. Rheological measurement 16 2.3.1. Dynamic Oscillatory Shear Test 17 2.3.2. Small Amplitude Oscillation Shear (SAOS) 17 2.3.3. Large Amplitude Oscillation Shear (LAOS) 20 Chapter 3. Results and Discussion 21 3.1. Characterization of Silica Nanoparticles 21 3.1.1. Particle Size Analysis 21 3.1.2. Particle Affinity 22 3.2. Morphology of PEG/RAN and PEG/RAN/SiNPs 23 3.3. Phase Separation Dynamics of PEG/RAN and PEG/RAN/SiNPs 25 3.3.1. Late-stage Scaling of PEG/RAN and PEG/RAN/SiNPs 25 3.4. Rheological Behavior of PEG/RAN and PEG/RAN/SiNPs 29 3.4.1. Frequency Sweep of RAN and RAN/SiNPs 29 3.4.2. Strain Sweep of PEG/RAN and PEG/RAN/SiNPs 31 3.4.3. Concentration Dependence of PEG/RAN and PEG/RAN/SiNPs 32 3.4.4. Stress Relaxation of PEG/RAN and PEG/RAN/SiNPs 42 3.4.5. Effect of Temperature on PEG/RAN and PEG/RAN/SiNPs 44 3.5. Discussion from SALS and Rheological measurements 47 Chapter 4. Conclusion 50 References 51

1. Lévesque, S. G.; Lim, R. M.; Shoichet, M. S. Macroporous Interconnected Dextran Scaffolds of Controlled Porosity for Tissue-Engineering Applications. Biomaterials 2005, 26 (35), 7436–7446.
2. Feng, J. M.; Liu, X. Q.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Suppressing Phase Coarsening in Immiscible Polymer Blends using Nano-Silica Particles Located at the Interface. RSC Adv. 2015, 5,74295−74303.
3. Imperiali, L.; Clasen, C.; Fransaer, J.; Macosko, C. W.; Vermant, A. Simple Route Towards Graphene Oxide Frameworks. Mater. Horiz 2014, 1, 139−145.
4. Tan, Y.; Song, Y.; Cao, Q.; Zheng, Q. Characterization of Carbon Black-Filled Immiscible Polypropylene/Polystyrene Blends. Polym. Int. 2011, 60, 823−832.
5. Ramsden, W. Separation of Solids in the Surface-Layers of Solutions and ’Suspensions’ (Observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation)–Preliminary Account. Proc. R. Soc. London 1903, 72, 156−164.
6. Pickering, S. U. Cxcvi—emulsions. Journal of the Chemical Society, Transactions.1907,91, 2001-2021.
7. Wilson, J. R.; Kobsiriphat, W.; Mendoza, R.; Chen, H.-Y.; Hiller, J. M.; Miller, D. J.; Thornton, K.; Voorhees, P. W.; Adler, S. B.; Barnett, S. A. Three-Dimensional Reconstruction of a Solid-Oxide Fuel-Cell Anode. Nat. Mater. 2006, 5 (7), 541–544.
8. Cates, M. E.; Clegg, P. S. Bijels: A New Class of Soft Materials. Soft Matter 2008, 4 (11), 2132–2138.
9. Herzig, E. M.; White, K. A.; Schofield, A. B.; Poon, W. C. K.; Clegg, P. S. Bicontinuous Emulsions Stabilized Solely by Colloidal Particles. Arxiv 2007.
10. Clegg, P. S. Bijels-Bicontinuous Particle-stabilized Emulsions. Royal Society of Chemistry. 2020, 10.
11. Hashimoto, T.; Itakura, M.; Shimidzu, N. Late Stage Spinodal Decomposition of a Binary Polymer Mixture. II. Scaling Analyses on Q m (τ) and I m (τ). J Chem Phys 1986, 85 (11), 6773–6786.
12. Siggia, E. D. Late Stages of Spinodal Decomposition in Binary Mixtures. Phys Rev A 1979, 20 (2), 595–605.
13. Hsu, D. Y. Studies on Phase separation of Poly (ethylene glycol)/Poly (ethylene glycol-ran-propylene glycol) Mixtures by Time-Resolved Small-Angle Light Scattering. Doctoral dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan, 2015.
14. Huang, S.; Bai, L.; Trifkovic, M.; Cheng, X.; Macosko, C. W. Controlling the Morphology of Immiscible Cocontinuous Polymer Blends via Silica Nanoparticles Jammed at the Interface. Macromolecules 2016, 49 (10), 3911–3918.
15. Yoshida, S.; Trifkovic, M. Unraveling the Effect of 3D Particle Localization on Coarsening Dynamics and Rheological Properties in Cocontinuous Polymer Blend Nanocomposites. Macromolecules 2019, 52 (20), 7678–7687.
16. Sumita, M.; Abe, H.; Kayaki, H.; Miyasaka, K. Effect of Melt Viscosity and Surface Tension of Polymers on the Percolation Threshold of Conductive-Particle-Filled Polymeric Composites. J Macromol Sci Part B 1986, 25 (1–2), 171–184.
17. Feng, J.-M.; Liu, X.-Q.; Bao, R.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Suppressing Phase Coarsening in Immiscible Polymer Blends Using Nano-Silica Particles Located at the Interface. Rsc Adv 2015, 5 (91), 74295–74303.
18. Liu, X.-Q.; Wang, Q.-Y.; Bao, R.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Suppressing Phase Retraction and Coalescence of Co-Continuous Polymer Blends: Effect of Nanoparticles and Particle Network. Rsc Adv 2014, 4 (90), 49429–49441.
19. Kamibayashi, M.; Ogura, H.; Otsubo, Y. Rheological Behavior of Suspensions of Silica Nanoparticles in Associating Polymer Solutions. Ind Eng Chem Res 2006, 45 (21), 6899–6905.
20. Chan, C. K.; Goldburg, W. I. Late-Stage Phase Separation and Hydrodynamic Flow in a Binary Liquid Mixture. Phys. Rev. Lett. 1987, 58 (7), 674–677.
21. Aarts, D. G. A. L.; Lekkerkerker, H. N. W. Confocal Scanning Laser Microscopy on Fluid–Fluid Demixing Colloid–Polymer Mixtures. J. Phys.: Condens. Matter 2004, 16 (38), S4231.
22. Li, R.; Yu, W.; Zhou, C. Rheological Characterization of Droplet-Matrix versus Co-Continuous Morphology. J Macromol Sci Part B 2006, 45 (5), 889–898.
23. López-Barrón, C. R.; Macosko, C. W. Rheological and Morphological Study of Cocontinuous Polymer Blends during Coarsening. J Rheol 2012, 56 (6), 1315–1334.
24. Vinckier, I.; Laun, H. Manifestation of Spinodal Decomposition in Oscillatory Shear Measurements. Macromol Symp 2000, 149 (1), 151–156.
25. Żyła, G.; Witek, A.; Gizowska, M. Rheological Profile of Boron Nitride–Ethylene Glycol Nanofluids. J Appl Phys 2015, 117 (1), 014302.
26. Pastoriza-Gallego, M. J.; Lugo, L.; Legido, J. L.; Piñeiro, M. M. Rheological Non-Newtonian Behaviour of Ethylene Glycol-Based Fe2O3 Nanofluids. Nanoscale Res Lett 2011, 6 (1), 560.
27. Bai, L.; Fruehwirth, J. W.; Cheng, X.; Macosko, C. W. Dynamics and Rheology of Nonpolar Bijels. Soft Matter 2015, 11 (26), 5282–5293.
28. Bai, L.; Fruehwirth, J.; Cheng, X.; Macosko, C. W. Interfacial Silica Nanoparticles Stabilize Cocontinuous Polymer Blends. Arxiv 2015.
29. Lee, M. N.; Thijssen, J. H. J.; Witt, J. A.; Clegg, P. S.; Mohraz, A. Making a Robust Interfacial Scaffold: Bijel Rheology and Its Link to Processability. Adv. Funct. Mater. 2013, 23 (4), 417–423.
30. Grattoni, C. A., Dawe, R. A., Seah, C. Y., & Gray, J. D. (1993). Lower critical solution coexistence curve and physical properties (density, viscosity, surface tension, and interfacial tension) of 2, 6-lutidine+ water. Journal of Chemical and Engineering Data, 38(4), 516-519.
31. Fan, J.; Raghavan, S. R.; Yu, X.-Y.; Khan, S. A.; Fedkiw, P. S.; Hou, J.; Baker, G. L. Composite Polymer Electrolytes Using Surface-Modified Fumed Silicas: Conductivity and Rheology. Solid State Ionics 1998, 111 (1–2), 117–123.
32. Martina, M.; Subramanyam, G.; Weaver, J. C.; Hutmacher, D. W.; Morse, D. E.; Valiyaveettil, S. Developing Macroporous Bicontinuous Materials as Scaffolds for Tissue Engineering. Biomaterials 2005, 26 (28), 5609–5616.
33. Thorson, T. J.; Gurlin, R. E.; Botvinick, E. L.; Mohraz, A. Bijel-Templated Implantable Biomaterials for Enhancing Tissue Integration and Vascularization. Acta Biomater. 2019, 94, 173–182.
34. Lin, W. C. Effect of Nanoparticles on Spinodal Decomposition Dynamics of Poly (ethylene glycol)/Poly (ethylene glycol-ran-propylene glycol) Blends. Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2022.
35. Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J Colloid Interf Sci 1968, 26 (1), 62–69.
36. Chu, S. J. A Study on Phase Separation Behavior of Lysozyme Solution. Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2023.
37. Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K. S.; Nam, J. G.; Ahn, K. H.; Lee, S. J.; Ewoldt, R. H.; McKinley, G. H. A Review of Nonlinear Oscillatory Shear Tests: Analysis and Application of Large Amplitude Oscillatory Shear (LAOS). Prog Polym Sci 2011, 36 (12), 1697–1753.
38. Mezger, T. The rheology handbook: for users of rotational and oscillatory rheometers. European Coatings, 2020.
39. Zainal, N. F. A.; Lai, S. A.; Chan, C. H. Melt Rheological Behavior and Morphology of Poly(Ethylene Oxide)/Natural Rubber-Graft-Poly(Methyl Methacrylate) Blends. Polymers 2020, 12 (3), 724.
40. Ewoldt, R. H.; Winter, P.; Maxey, J.; McKinley, G. H. Large Amplitude Oscillatory Shear of Pseudoplastic and Elastoviscoplastic Materials. Rheol Acta 2010, 49 (2), 191–212.
41. Wilhelm, M.; Maring, D.; Spiess, H.-W. Fourier-Transform Rheology. Rheol Acta 1998, 37 (4), 399–405.
42. Cho, K. S.; Hyun, K.; Ahn, K. H.; Lee, S. J. A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response. J Rheol 2005, 49 (3), 747–758.
43. Schreuders, F. K. G.; Sagis, L. M. C.; Bodnár, I.; Erni, P.; Boom, R. M.; Goot, A. J. van der. Small and Large Oscillatory Shear Properties of Concentrated Proteins. Food Hydrocolloid 2021, 110, 106172.
44. Xie, M. F. Effect of affinity of silica nanoparticles on phase separation mechanisms of poly(ethylene glycol)/poly(ethylene glycol-ran-propylene glycol) blends. Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2023.
45. Grand, A. L.; Petekidis, G. Effects of Particle Softness on the Rheology and Yielding of Colloidal Glasses. Rheol. Acta 2008, 47 (5–6), 579–590.
46. Durmus, A.; Kasgoz, A.; Macosko, C. W. Linear Low Density Polyethylene (LLDPE)/Clay Nanocomposites. Part I: Structural Characterization and Quantifying Clay Dispersion by Melt Rheology. Polymer 2007, 48 (15), 4492–4502.
47. Plazek, D. J. The Temperature Dependence of the Viscoelastic Behavior of Poly(Vinyl Acetate). Polym J 1980, 12 (1), 43–53.
48. Nagarkar, S. P.; Velankar, S. S. Morphology and Rheology of Ternary Fluid–Fluid–Solid Systems. Soft Matter 2012, 8 (32), 8464–8477.
49. Tavacoli, J. W.; Thijssen, J. H. J.; Schofield, A. B.; Clegg, P. S. Novel, Robust, and Versatile Bijels of Nitromethane, Ethanediol, and Colloidal Silica: Capsules, Sub-Ten-Micrometer Domains, and Mechanical Properties. Adv. Funct. Mater. 2011, 21 (11), 2020–2027.
50. Witt, J. A.; Mumm, D. R.; Mohraz, A. Bijel Reinforcement by Droplet Bridging: A Route to Bicontinuous Materials with Large Domains. Soft Matter 2013, 9 (29), 6773–6780.
51. Gao, J., Huang, C., Wang, N., Yu, W., & Zhou, C. Phase separation of poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) blends in the presence of silica nanoparticles. Polymer, 2012, 53(8), 1772-1782.
52. Oldroyd, J. G. The elastic and viscous properties of emulsions and suspensions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1953, 218(1132), 122-132.
53. Elias, L.; Fenouillot, F.; Majeste, J. C.; Cassagnau, Ph. Morphology and Rheology of Immiscible Polymer Blends Filled with Silica Nanoparticles. Polymer 2007, 48 (20), 6029–6040.
54. Tobolsky, A. V.; Dunell, B. A.; Andrews, R. D. Stress Relaxation and Dynamic Properties of Polymers. Text Res J 1951, 21 (6), 404–411.
55. Barthel, H., Dreyer, M., Gottschalk‐Gaudig, T., Litvinov, V., & Nikitina, E. Fumed silica–rheological additive for adhesives, resins, and paints. In Macromolecular Symposia, 2002,187(1), 573-584.
56. Shen, J.; Lin, X.; Liu, J.; Li, X. Effects of Cross-Link Density and Distribution on Static and Dynamic Properties of Chemically Cross-Linked Polymers. Macromolecules 2019, 52 (1), 121–134.

無法下載圖示 全文公開日期 2028/08/07 (校內網路)
全文公開日期 2028/08/07 (校外網路)
全文公開日期 2028/08/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE