簡易檢索 / 詳目顯示

研究生: 石守助
Shou-Chu Shih
論文名稱: 三元合金觸媒之結構鑑定與其對有機分子催化氧化之研究
Study on structural characterization of ternary alloy catalysts and their catalytic oxidation for organic molecules
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蔡大翔
Dah-Shyang Tsai
李志甫
Jyh-Fu Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 180
中文關鍵詞: 膠體法陽極觸媒直接甲醇燃料電池臨場同步輻射吸收光譜CO剝除
外文關鍵詞: in situ X-ray absorption spectroscopy, direct methanol fuel cells (DMFCs), CO-stripping., Colloidal method, anode catalysts
相關次數: 點閱:524下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用修飾Watanabe合成方法合成Pt-Ru,另外以不同方式製備出Pt-Ti、Ru-Ti及Pt-Ru-Ti等奈米級金屬觸媒。並利用同步輻射吸收光譜技術對各個金屬觸媒材料結構作分析,以期能探討其結構對有機分子催化氧化反應之影響。
研究中也藉由電化學方法量測材料之電化學活性、CO 剝除測試,並以10%甲醇濃度找出最好的觸媒材料,然後在探討其對10%甲酸與10%乙醇之電化學活性,並且選擇其中較好的合成之方法,加入Au原子合成Pt-Au雙觸媒、Pt-Ru-Au三元觸媒及Pt-Ru-Ti-Au四元觸媒。
從XRD與TEM圖分析知自製Pt-Ru-Ti三元觸媒所得到晶粒及平均粒徑比Pt-Ru雙元觸媒小約1~3nm,而加入Au原子觸媒,經XRD分析得到為Au的FCC結構,判斷其應非合金相,並且平均粒徑較大聚集較明顯。利用極化曲線的方法得到各個觸媒之催化特性,以PRT 1-3最佳。但在CO剝除的實驗中,以PRT 2-3去除CO能力最好。


In this work, nano-sized Pt–Ru, Pt–Ti, Ru–Ti and Pt–Ru–Ti catalysts were successfully synthesized by the proposed modified Watanabe method. By employing the X-ray absorption spectroscopy technique, comprising of XANES and EXAFS, structures of the synthesized catalysts were elucidated and their electrocatalytic efficiencies towards various organic molecules were further discussed.

The electrochemical activities and CO-stripping abilities of the synthesized catalysts were also evaluated. The methanol electro-oxidation ability was tested for all the synthesized catalysts in presence of 10wt% methanol solution. Among them the catalyst which exhibits higher methanol electro-oxidation activity was selected to test the formic acid and ethanol electro-oxidation abilities. From the understanding of the above studies, the modified Watanabe pathway was optimized and selected for the synthesis of other metallic nanoparticles of interest such as Pt–Au, Pt–Ru–Au and Pt–Ru–Au–Ti.

From XRD and TEM analysis, average particle size of the synthesized tri-metallic Pt–Ru–Ti catalyst was determined to be around 1–3 nm which is smaller than that of the similarly synthesized bi-metallic Pt–Ru catalyst. When Au was incorporated into the catalysts, a FCC Au structure was identified from the XRD analysis. It indicated that Au grains existed individually instead of forming alloys with the other metal atoms. Moreover, larger grains were observed with a slight aggregation. By comparing the polarization curves, the named “PRT 1–3” sample exhibited highest electrochemical activity towards methanol oxidation. On the other hand, “PRT 2–3” sample showed the best CO-stripping ability.

摘要 I Abstract .II 致謝 .IV 目錄 .V 圖目錄 ....X 表目錄 .....XX 第一章 緒論 1 1.1前言 1 1.2直接甲醇燃料電池(DMFC) 5 1.2.1 DMFC陽極觸媒材料 8 1.2.1.1 Pt或Pt-X(X:metal)或Pt-X-Y(X,Y:metal)或Pt-X-Y-Z(X,Y,Z:metal)合金觸媒 ..9 1.2.1.2合金觸媒之製備方式 14 1.2.1.3甲醇於觸媒電極氧化反應之機制 17 1.2.1.4甲酸於觸媒電極氧化反應之機制 23 1.2.2 DMFC電解質 24 1.2.3 DMFC陰極材料 25 1.3研究動機與目的 26 1.4研究方法 27 第二章 原理 29 2.1 X-ray吸收光譜之原理 29 2.1.1 EXAFS .29 2.1.2 XANES 35 2.1.3數據分析 36 2.2 XRD分析原理 41 2.3電化學原理 42 2.3.1循環伏安法 42 2.3.2極化曲線 46 第三章 實驗設備與方法 48 3.1實驗藥品及設備 48 3.1.1實驗藥品 48 3.1.2儀器設備 49 3.2實驗方法 50 3.2.1陽極觸媒製備 50 3.2.1.1碳黑之前處理 50 3.2.1.2修飾Watanabe方法合成PtRu/C觸媒 50 3.2.1.3 修飾Watanabe方法(1)合成陽極觸媒 52 3.2.1.4 修飾Watanabe方法(2)合成陽極觸媒 54 3.2.2.2 修飾Watanabe方法合成PtAu/C觸媒 56 3.2.1.6 修飾Watanabe方法合成PtRuAu/C觸媒 58 3.2.1.7 修飾Watanabe方法合成四元觸媒 59 3.2.1.7.1 修飾Watanabe方法合成1-3PRTA觸媒 59 3.2.1.7.2修飾Watanabe方法合成 2-3 PRTA觸媒…………...60 3.2.2 材料鑑定與分析 61 3.2.2.1 XRD分析 61 3.2.2.2 TEM 分析 62 3.2.2.3 EDX元素分析 62 3.2.2.4 電化學特性測試 63 3.2.2.4.1電極片製備 64 3.2.2.4.1.1 漿料之滴數與觸媒重量之關係 64 3.2.2.4.1.2 極片製作 64 3.2.2.4.2 電化學特性量測 65 3.2.2.4.2.1循環伏安法 66 3.2.2.4.2.2 極化曲線 66 3.2.2.4.2.3 CO毒化測試 66 3.2.2.5 X光吸收光譜(XAS) 67 3.2.3.5.1 EXAFS之曲線適配 67 第四章 結果 69 4.1陽極金屬觸媒材料之特性分析 69 4.1.1 能譜儀分析(EDX) 72 4.1.2 XRD與TEM分析 72 4.2電化學特性量測結果 80 4.2.1 循環伏安法 80 4.2.2 極化曲線 82 4.2.2.1不同溶液其極化曲線 85 4.2.3 CO毒化測試結果 97 4.2.3.1不同電位下商品化觸媒吸附CO的變化 97 4.2.3.2 相同電位下吸附CO之比較 101 4.3 不同觸媒材料結構之XANES及EXAFS圖譜變化 104 4.3.1 X光吸收近邊緣結構 107 4.3.2 延伸X光吸收微細結構 110 第五章 討論 119 5.1陽極觸媒材料之探討 119 5.1.1 陽極觸媒材料之XRD及TEM比較 119 5.1.2 陽極觸媒材料之結構比較 120 5.1.3 陽極電極觸媒材料之電化學活性比較 127 5.1.4 陽極電極觸媒材料之結構與電化學活性之間的關係 133 第六章 結論 136 第七章 參考文獻 138 附錄 145

1.Ostwald W. Z., Elektrotech. Electrochem., 4, 122, 1894.
2.Carrette L., Friedrich K. A., Stimming U., “Fuel cell fundamemtal
and appliction”, Fuel Cell, 1, 1, 2001.
3.Lamy C., Lima, A., Le Rhun V., Coutanccau C., Leger J. M., J.
Power Sources, 105, 283, 2002.
4.Hogarth M. P., Ralph T. R., Platinum Met. Rev., 46, 146, 2002.
5.Yang, H., Alonso-Vante N., Lége J. M., Lamy C., “Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes”, J. Phys. Chem. B, 108, 1938, 2004.
6.Kai Sundmacher, Chemical Engineering Science, 54, 2927, 1999.
7.Shukla A. K. , Ravikumar M. K. , Gandhi K. S., “Direct methanol fuel cells for vehicular applications’’, J. Solid State Electronchem., 2, 117,
1998.
8.Li W., Liang C., Zhou W., Qiu J., Zhou Z., Sun G., Xin Q, “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys.Chem. B, 107, 6292, 2003.
9. Hubert A. Gasteiger, Nenad M. Markovic, Philip N. Ross, , Jr.; “H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects’’, J. Phys. Chem., 99, 8290, 1995.
10.Steigerwalt E. S., Deluga G. A., Cliffel D. E., Lukehart C. M., “ A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst ’’, J. Phys. Chem B., 105, 8097, 2001.
11.Burstein G. T., Barnett C. J., Kucernak A. R., Williams K. R., Catal.Today, 38, 425, 1997.
12.Liu R., Iddir H., Fan Q., Hou G., Bo A., Ley K. L., Smotkin, E. S., “Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes”,J. Phys. Chem. B, 104, 3518, 2000.
13.Lin W. F., Zei M. S., Eiswirth M., Ertl G., Iwasita T., Vielstich W., “Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidation”, J. Phys. Chem. B, 103, 6968, 1999.
14.Shukla, A. K., Raman, R. K., Choudhury, N. A., Priolkar, K. R.;
Sarode, P. R., Emura, S., Kumashiro R., “Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells”, J. Electroanal. Chem.,563,181, 2004.
15.Hogarth, M. P., Ralph T. R., Platinum Met. Rev., 46, 146, 2002.
16.Beden B., Kadirgan F., Lamy C., Leger J. M.,“Electrocatalytic oxidation of methanol on platinum-based binary electrodes”, J. Electroanal. Chem., 127, 75, 1981.
17.Zhong C. J., Maye M. M., Adv. Mater., 13, 1507, 2001.
18.Hamnett A., Catal. Today, 38, 445, 1997.
19.Shim J., Yoo D. Y., Lee J. S., “Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell”, Electrochim. Acta, 45, 1943, 2000.
20.Reddington E., Sapienza A., Gurau B., Viswanathan R., Sarangapani S., Smotkin E. S., Mallouk, T. E., Science, 280,1735, 1998.
21.Linda C., Andreas Friedrich K., Ulrich S. , “Fuel cells: Principles, Types, Fuels, and Applications ”, Chemphyschem, 1, 162,2000.
22.Ledjeff-Hey K., Heinzel A., “Critical issues and future prospects for solid polymer fuel cells” , J. Power Sources, 61, 125,1996.
23.Watanabe M., Furuuchi Y., Motoo S., “Electrocatalysis by Ad-atoms Part XIII. Preparation of Ad-electrodes with Tin Ad-atoms for Methanol, Formaldehyde and Formic Acid Fuel Cells”,J. Electrochem.Chem., 191, 367,1985.
24.R. J. Behm , Z. Jusys , J. Kaiser , “Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation-A DEMS study”, Electrochimica Acta , 47 3693-3706, 2002.
25.Lasch K., Hayn G., Jorissen L., Garche J., Besenhardt O., “Mixed conducting catalyst support materials for the direct methanol fuel cell”, J. Powder Sources, 105, 305, 2002.
26.McBreen J., Mukerjee S., , “In situ X-ray Absorption Stiudies of a Pt-Ru Electrocatalyst”, J. Electrochem. Soc., 142, 3399, 1995.
27.Gastieger H. A., Marvokic N. M., ROSS P. N., “Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface’’ , J. Phys. Chem., 99, 8945, 1995.
28. McBreen J., Mukerjee S. , “An In Situ X-Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon-Supported Pt Electrocatalysts’’, J. Electrochem. Soc, 146 (2) 600-606, 1999.
29.Myoung k. M. , Jihoon C. , Kyuwoong C. ,Hasuck K., “Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications’’, Electrochimica Acta , 45, 4211, 2000.
30.Oliveira N. A., Giz M. J. , “The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon’’, J. Electrochem. Soc., 149, A272, 2002.
31.Park K. W., Choi J. H., Kwon B. K., Lee S. A., and Sung Y. E., “Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation”, J. Phys. Chem. B, 106, 1869, 2002.
32.R. Venkataraman , H. R. Kunz, J. M. Fentonb , “ Development of New CO Tolerant Ternary Anode Catalysts for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc, 150 (3) A278-A284, 2003.
33.Gurau B., Viswanathan R., Liu R., Lafrenz T. J., Ley K. L., and Smotkin E. S.,“Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation1”, J. Phys. Chem. B, 102, 9997, 1998.
34.Arico A. S., Poltarzewski Z., Kim H., “Investigation of a carbon
-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells’’, J. Power Sources, 55, 159 , 1995.
35.Eve S. Steigerwalt , Gregg A. Deluga, C. M. Lukehart , “ Pt-Ru/Carbon Fiber Nanocomposites: Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance ’’, J. Phys. Chem. B , 106, 760-766, 2002 .
36.Antolini E., Cardellini F., “Formation of carbon supported PtRu alloys: an XRD analysis”, J. Alloys and Compounds, 315, 118, 2001.
37.Y. Takasu , T. Fujiwara , Y. Murakami, K. Sasaki , M. Oguri , T. Asaki, W. Sugimotoa , “Effect of Structure of Carbon-Supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol ”,
J. Electrochem. Soc., 147 (12) 4421-4427, 2000 .
38.Watanabe M., Uchida M., Motoo S.,“Preparation of Highly Dispersed Pt+Ru Clusters and the Activity for the Electro-oxidation of Methanol” , J. Electrochem. Chem., 229, 395, 1987.
39. Swathirajan S. Youssef M. Mikhail,“Electrochemical Oxidation of Methanol at Chemically Prepared Platinum-Ruthenium Alloy Electrodes”, J. Electrochem. Soc., 138, 1321, 1991.
40. Bonnemann , W. Vogel , J. Rothe , J. Hormes, “ Structure and Chemical Composition of Surfactant-Stabilized PtRu Alloy Colloids’’,
J. Phys. Chem. B , 101, 11029-11036, 1997 .
41. Hamnett A., Kennedy B. J., Wagner F. E., J. Catalysis, 124, 30, 1990.
42. Zhang X., Kwong Y. C., “Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles,Their Characterization and Electrocatalystic Properties’’, Chem. Mater., 15, 451, 2003.
43. Escudero M.J., Hontanon E., Schwartz S., “Development and performance chaaracterisation of new electrocatalysts for PEMFC’’, J. Power Sources, 106, 206, 2002.
44. Zhaolin Liu , Jim Yang Lee , Ming Han , Weixiang Chenc , Leong Ming Gana , “Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions’’, J. Mater. Chem. , 12, 2453–2458, 2002 .
45. Zhaolin Liu , Jim Yang Lee , Weixiang Chen , Ming Han, Leong Ming Gan , “Physical and Electrochemical Characterizations of Microwave -Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles’’, Langmuir , 20 , 181-187, 2004.
46. I-Ming Hsing , Xin Wang , “ Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells’’, Electrochimica Acta , 47 , 2981, 2002.
47. Philippe Serp , J. Mater. Chem., 11, 1980.
48. Bagotsky V. S., Vassilev Y. B., J. Electroanal. Chem., 81, 229, 1977.
49.Long, J. W., Stroud, R. M., Swider-Lyons, K. E., Rolison D. R., “How To Make Electrocatalysts More Active for Direct Methanol Oxidation-Avoid PtRu Bimetallic Alloys!” J. Phys. Chem. B, 104, 9772, 2000.
50.Liu Z., Lee J. Y., Han M., Chen W., Gan L. M., J. Mater. Chem., 12, 2453, 2002.
51.Yimin Zhu , Hiroyuki Uchida , Takahiro Yajima, Masahiro Watanabe, “ Attenuated Total Reflection-Fourier Transform Infrared Study of Methanol Oxidation on Sputtered Pt Film Electrode ”, Langmuir , 17, 146-154, 2001 .
52.Takahiro Yajima , Hiroyuki Uchida and Masahiro Watanabe , “In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt-Ru Alloy ”, J. Phys. Chem. B , 108 , 2654, 2004.
53.William L. Holstein, H. David Rosenfeld, “In-Situ X-ray
Absorption Spectroscopy Study of Pt and Ru Chemistry during
Methanol Electrooxidation”, J. Phys. Chem. B, 109, 2176, 2005.
54.Robert Larsen, Richard I. Masel, “Kinetic study of CO Tolerance during Electro-oxidation of Formic Acid on Spontaneously Deposited Pt/Pd and Pt/Ru Nanoparticles”, Electrochemical and Solid-State Latters, 7, A148, 2004.
55.Shim J., Yoo D. Y., Lee J. S., “Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell”, Electrochim. Acta, 45, 1943, 2000.
56.彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”,1997.
57.Wang X., Hsing I. M., “Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells”, Electrochim. Acta, 47, 2981, 2002.
58.Tran T.D., Stanely H. Langer, “ Electrochemical measurement of platinum surface areas on particulate conductive supports” Anal. Chem., 65, 1805, 1993.
59.林賜岱,“直接甲醇燃料電池陽極反應機制之研究”,台灣科技大學, 2002。
60.B. -J. Hwang, L. S. Sarma, J. –M. Chen, C. -H. Chen, S. -C. Shih, G. -R. Wang, D. -G. Liu, J. -F. Lee, M. -T. Tang, “Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray Absorption Spectroscopy”, J. Am. Chem.Soc., 2005(in press).
61.Anatoly I. Frenkel, Charles W. Hills, and Ralph G. Nuzzo, “A View from the Inside: Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles”, J. Phys. Chem. B, 105, 12689, 2005.
62.Takasu Y., Sugimoto, W., Murakami Y., Catal. Surf., 7, 21, 2003.

QR CODE