簡易檢索 / 詳目顯示

研究生: 賴世豪
Shih-Hao Lai
論文名稱: 利用標準CMOS製程製作螺線型微型金屬加熱絲之紅外光熱輻射發光元件
Fabrication of Infrared Thermal Emitters with Spiral Shape Micro Metal Heater by CMOS Process
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
何文章
Wen-Jeng Ho
葉秉慧
Ping-Hui Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 遠紅外光熱輻射發光元件互補式金屬氧化物半導體製程
外文關鍵詞: far infrared, thermal emitter, CMOS process
相關次數: 點閱:233下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

除了工業上的應用以外,遠紅外線熱輻射發光元件在醫療上已有許多應用,例如增加血液循環、加速傷口復原等。而為了使之更廣泛的運用在生活中,降低成本以及大量製造便是重要的課題之一。
本論文主要在改善先前製作之遠紅外線熱輻射發光元件的問題,針對其熱均勻度及發光效率做改良,設計十五種不同的元件參數來進行比較。本次與前次元件皆利用現有的0.18 µm CMOS標準製程製作,以達到好的製程穩定性、低成本及大量製造的目標。
本次重新設計加熱絲形狀,以螺線型取代先前的蛇線形,以達到表面溫度均勻分布的目的;加熱材料改用正電阻溫度係數的金屬材料,其電阻與溫度成正比,高溫時能抑制輸入電流,避免元件過載而損毀。其中部分的設計利用晶圓廠提供之MEMS後製程技術,將加熱絲底下之基板挖空,以空氣隔絕熱能,防止熱能往基板散失,進而比較挖空與否的效率差異。
本次元件經量測後,發光效率皆比前次元件高,發光波段皆落在8 µm以後,熱分佈也較均勻,元件在5V的偏壓下最高可達到5.7×10-5的發光效率,功率密度為2.48 mW/cm2。不同元件的比較結果中,有挖空基板的元件有良好的熱侷限性,而在定電壓且相同線寬的前提下,電阻較小其效率較好;而在定電壓且相同尺寸的前提下,較大的電阻有較好的耐壓性。


Besides the industrial applications, far-infrared (FIR) thermal emitters are useful in medical applications, for example, to enhance blood circulation and accelerate wound healing. Reducing costs and mass production are the keys to make FIR emitters wide-spreading in various applications.
This work aims to develop far-infrared thermal emitters with enhanced thermal uniformity and luminous efficiency. Fifteen components of different parameters are designed and fabricated for performance comparisons. The components are manufactured using the existing standard 0.18 µm CMOS process to achieve good process stability, low cost, and large-scale manufacturing goals.
The heating wire is designed as spiral shape rather than the previous U-shape in order to have uniform temperature distribution. The metal layer is adopted as the heating material and it has a positive temperature coefficient of resistance. After applying a voltage to the metal layer, the temperature starts to rise and thus increases the electric resistance. It could suppress the input current and prevent the device overload and burnout when the temperature is high. Some of these designs require the MEMS process technology provided by the MPW service to etch hollows and remove the substrate under the heating wires. This is for providing thermal isolation to improve the heating efficiency.
After measuring all the thermal emitters, the luminous efficiency is higher than the previous work. The optical spectra are above 8 µm of wavelength. The maximum luminous efficiency is 5.7×10-5 at a bias voltage of 5 V. The power density was 2.48 mW/cm2, and the surface temperature distribution is very uniform. Compare of different thermal emitters, we find that etched hollows can provide good thermal isolation. The devices with the same line width and material but smaller resistance values generate higher luminous efficiency at a fixed voltage. The devices with the same chip size but larger resistance values can tolerate a larger applied voltage.

摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 x 第一章 研究動機 1 1-1 前言 1 1-2 紅外光技術背景 1 1-3 市售紅外光元件介紹 3 1-4 研究動機 6 1-5 研究方向 6 1-6 論文架構 7 第二章 元件設計與模擬 8 2-1 黑體輻射簡介 8 2-2 金屬網格濾波器 10 2-3 半導體與金屬特性 11 2-4 發光效率轉換 12 2-5 標準CMOS製程 16 2-6 元件模擬 18 2-7 元件參數設計 25 第三章 元件特性量測 31 3-1 製程晶片外觀 31 3-2 遠紅外光頻譜量測 33 3-3 發光功率量測 41 3-4 溫度分布量測 52 第四章 結論 58 4-1 成果與討論 58 4-2 未來研究方向 60 參考文獻 61

[1] D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?,” Proceedings of the IEEE, vol. 93(10), 1722-1743, 2005.
[2] H. San, C. Li, X. Chen, R. Chen, and Q. Zhang, “Silicon-based micro-machined infrared emitters with a micro-bridge and a self-heating membrane structure,” IEEE Photonics Technology Letters, vol. 25(11), 1014-1016, 2013.
[3] 謝鸚爗、林招膨、劉威忠、林群智,“遠紅外線在醫學上之應用及其作用機制”,台灣應用輻射與同位素雜誌,3: 333-340,2007。
[4] 李湘琳,“探討遠紅外線於穴位照射對血液透析病患貧血之影響”,碩士論文,國立台北護理健康大學,2014。
[5] J. S. Dover, T. J. Phillips, and K. A. Arndt, “Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation,” Journal of the American Academy of Dermatology, vol. 20(2), 278-286, 1989.
[6] Y. Hamada, F. Teraoka, T. Matsumoto, A. Madachi, F. Toki, E. Uda, R. Hase, J. Takahashi, and N. Matsuura, “Effects of far infrared ray on Hela cells and WI-38 cells,” International Congress Series,1255, 339-341, 2003.
[7] 劉海平、沈雪勇、丁光宏,“針灸與經絡穴位紅外輻射特性”,中國針灸,24(2),2004。
[8] C. Tei, Y. Horikiri, J. C. Park, J. W. Jeong, K. S. Chang, N. Tanaka, and Y. Toyama, “Effects of hot water bath or sauna on patients with congestive heart failure: acute hemodynamic improvement by thermal vasodilation,” Journal of Cardiology, vol. 24(3), 175-183, 1994.
[9] 徐秀美、鄒劍平,“遠紅外線照射治療小兒腸痙攣208例”,中華理療雜誌,22(4): 229,1999。
[10] 姜平、羅力生,“遠紅外線對鼠隨意皮瓣成活的影響”,微循環學雜誌,10(1): 69-71,2000。
[11] 荊蕊平、王昕、劉淑青,“遠紅外線照射治療產後尿瀦留15例”,現代中西醫結合雜誌,9(13): 1270,2000。
[12] M. Imamura, S. Biro, T. Kihara, S. Yoshifuku, K. Takasaki, Y. Otsuji, S. Minagoe, Y. Toyama, and C. Tei, “Repeated thermal therapy improves impaired vascular endothelial function in patients with coronary risk factors,” Journal of the American College of Cardiology, vol. 38(4), 1083-1088, 2001.
[13] 何勇、李志新、崔友,“中遠紅外線對荷瘤鼠大腦β─內啡肽、腦啡肽、強啡肽水平影響的實驗研究”,黑龍江醫藥科學,24(6): 42-43,2001。
[14] H. Tyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, H. Nakanishi, A-Hon. Kwon, Y. Azuma, T. Nagaoka, T. Ogawa, and Y. Kamiyama, “Promotive effects of far-infrared ray on full-thickness skin wound healing in rats,” Experimental Biology and Medicine, vol. 228(6), 724-729, 2003.
[15] A. Masuda, Y. Koga, M. Hattanmaru, S. Minagoe, and C. Tei, “The effects of repeated thermal therapy for patients with chronic pain,” Journal of Psychosomatic Research, vol. 74(5), 288-294, 2005.
[16] A. Masuda, T. Kihara, T. Fukudome, T. Shinsato, S. Minagoe, and C. Tei, “The effects of repeated thermal therapy for two patients with chronic fatigue syndrome,” Journal of Psychosomatic Research, vol. 58(4), 383-387, 2005.
[17] I. Puscasu, M. U. Pralle, J. T. Daly, M. P. McNeal, and E. A. Johnson, United States Patent No. 7,825,380 B2, 2010.
[18] ICx Photonics, “tunIRTM,” Product Overview, Oct. 2017.
(http://www.amstechnologies.com/fileadmin/amsmedia/downloads/2293_TunIR.pdf)
[19] ICx Photonics, “Broadband Pulsed Infrared Light Sources,” Data Sheet, Oct. 2017.
(http://www.amstechnologies.com/fileadmin/amsmedia/downloads/2533_IR_Broadband_Sources.pdf)
[20] 蘇侯安,“利用CMOS與微機電製程製作含金屬網格濾波器之遠紅外線熱輻射發光元件”,碩士論文,國立台灣科技大學,2017。
[21] W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behavior,” In Proc. of SPIE, vol. 5836, 541, 2005.
[22] Y. Udagawa, H. Ishigame, and H. Nagasawa, “Effects of hydroxyapatite in combination with far-infrared rays on spontaneous mammary tumorigenesis in SHN mice,” The American journal of Chinese medicine, vol. 30(4), 495-505, 2002.
[23] S. Dong, N. Li, S. Chen, X. Liu, and W. Lu, “Impact ionization in quantum well infrared photodetectors with different number of periods,” Journal of Applied Physics, 111(3), 034504, 2012.
[24] W. J. Yoo, K. W. Jang, J. K. Seo, J. Moon, K. T. Han, J. Y. Park, B. G. Park, and B. Lee, “Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers,” Sensors, vol. 11(10) ,9549-9559, 2011.
[25] D. J. Shelton, J. C. Ginn, and G. D. Boreman, “Bandwidth Variations in Conformal Infrared Frequency Selective Surfaces,” IEEE Antennas and Propagation Society International Symposium, 3976-3979, 2007.
[26] K. D. Mőller, J. B. Warren, J. B. Heaney, and C. Kotecki, “Cross-shaped bandpass filters for the near- and mid-infrared wavelength regions,” Applied Optics, vol. 35(31), 6210-6215, 1996.
[27] A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. da Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Advances in Optical Technologies, vol. 2012(530512), 2012.
[28] C. E. Mortimer, “Chemistry: A Conceptual Approach,” Van Nostrand Reinhold, 1975.
[29] J. R. Howell, R. Siegel, and M. P. Menguc, “Thermal Radiation Heat Transfer”, CRC press, 2010.
[30] H. Baehr, and K. Stephan, “Heat and Mass Transfer”, Springer Berlin Heidelberg, 2011.
[31] T. Ott, M. Schossig, V. Norkus, and G. Gerlach, “Efficient thermal infrared emitter with high radiant power,” Journal of Sensors and Sensor Systems, vol. 4, 313-319, 2015.
[32] W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors,” Sensors, vol. 11(3), 2580-2591, 2011.
[33] J. L. Miller, “Principles of Infrared Technology: A Practical Guide to the State of the Art,” Van Nostrand Reinhold, 1994.

QR CODE