簡易檢索 / 詳目顯示

研究生: 高振源
Chen-Yuan Kao
論文名稱: 鋁矽熔湯中矽含量對熱浸鍍310不銹鋼高溫氧化之作用
Effect of Si in the Al-Si Molten Bath on High Temperature Oxidation Behavior of Hot-Dipping Aluminized 310 Stainless Steel
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 鄭偉鈞
Wei-Chun Cheng
張祐語
Yiau-Yu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 87
中文關鍵詞: 熱浸鍍鋁-矽合金熱浸鋁塗層鋁化層熱循環
外文關鍵詞: 310 stainless steel, Al-Si alloy, Aluminized, Hot-dipping
相關次數: 點閱:240下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

310不銹鋼進行熱浸鍍純鋁/鋁-1wt%矽/鋁-7wt%矽塗層後,於850℃靜滯空氣及熱循環的高溫氧化實驗,藉以探討不同矽含量於熱浸鍍後鋁化層之相變化、厚度改變與抗高温氧化及熱循環之行為。
實驗結果顯示,三種不同含矽量之熱浸鍍塗層由表面至底材依序形成Al(Al-Si)、FeAl3和Fe2Al5。隨著矽含量的增加,熱浸鋁塗層的厚度隨之減少,且合金化層變得更為細窄與平坦。於850℃靜滯空氣之恆溫氧化實驗,隨著高溫擴散行為持續進行,純鋁/鋁-1wt.%矽/鋁-7wt.%矽三種塗層內部的FeAl2和Fe2Al5皆漸漸轉變為FeAl相,且試片鋁化層之厚度亦隨之增厚。矽含量愈高,Cr3Si於鋁化層的分布也愈緻密。此外,就氧化增重而言,未添加矽之鋁鍍件於850℃恆溫氧化的重量增加最小,顯示矽含量之添加並無法改善鋁鍍件之高溫氧化性質。於熱循環氧化實驗,7wt.%矽塗層相較於純鋁及1wt.%矽塗層有最大之重量變化。顯示在熱循環的過程中,7wt.%矽塗層試片的表面氧化皮膜發生破裂剝離的現象為最嚴重。


The purpose of this study was to investigate the phase morphology, thickness, and anti-oxidation behavior of the Al-Si layer of the different content of Si.
The results showed that the aluminide coating layers of the three specimens consisted of three phases: Al (Al-Si), FeAl3, and Fe2Al5 were detected from the top coating to the steel substrate. According as the increase of the Si content, the thickness of the aluminide layer gradually decreased and the aluminized layer became flatter and smoother. Thus, it inhibited the growth of the aluminized layer. The data from isothermal and thermal cycle in 850℃static air, we found that the FeAl changed from the FeAl2 and Fe2Al5 in the interior parts of the pure Al, Al-1wt%Si, Al-7wt%Si specimens. The final thickness of the aluminized layer of the three specimens was approximately the same. According as the increase of the Si content, the distribution of Cr3Si was more densely. In addition, as for the weight gain of oxidation, it was little effect on the increase of the weight gain without the addition of Si in aluminized coating samples at isothermal and thermal cycle in 850℃static air. These results indicated that the property of high temperature and oxidation did not improve by the addition of Si content. Moreover, the values of increasing mass were significantly changed in the Al-7wt%Si specimens, compared to the pure Al and Al-1wt%Si specimens. Also, the crack and destroy of oxide scale was more obvious in the Al-7wt%Si specimens than others at the process of thermal cycle.

中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅳ 圖目次 Ⅶ 表目次 Ⅹ 第一章 前言 1 第二章 文獻回顧 4  2.1 名詞釋義 4   2.1.1 材料與熱浸鍍作業 4   2.1.2 恆溫氧化 5   2.1.3 熱循環 6  2.2 熱浸鍍鋁之技術 7  2.3 熱浸鍍鋁之形成條件 8   2.3.1 溼潤作用 8   2.3.2 溶解度 9   2.3.2 擴散機構 10  2.4 鍍層厚度之控制參數 11   2.4.1 熱浸溫度 11   2.4.2 熱浸時間 12   2.4.3 移出鋁湯速度 13   2.4.4 助熔劑 14  2.5 310SS組成元素於熱浸鍍鋁矽的作用 16   2.5.1 鉻 16   2.5.2 鎳 16   2.5.3 錳 16   2.5.4 鋁 16   2.5.5 矽 17  2.6 高溫氧化 20   2.6.1 氧化機制 20   2.6.2 鍍層之附著性 20   2.6.3 鋁化層的相變化 22   2.6.4 鋁化層之缺陷結構 24   2.6.5 Kirkendall效應 27  2.7 熱循環之作用 28   2.7.1 裂縫與剝離 28   2.7.2 鬚晶成長 30 第三章 實驗方法 31  3.1 實驗流程 31   3.1.1 試片製作與加工 32   3.1.2 合金成分分析 32   3.1.3 試片前處理 33   3.1.4 熱浸鍍作業 34   3.1.5 試片後處理 35  3.2 實驗設備 36  3.3 恆溫氧化試驗 37   3.3.1 高溫氧化 37   3.3.2 熱循環試驗 38  3.4 分析方法 39   3.4.1 金相觀察與分析 39   3.4.2 鍍層厚度量測 40   3.4.3 X光繞射分析 40   3.4.4 SEM觀察與EDS分析元素成分 42 第四章 結果與討論 43  4.1 熱浸鍍實驗 43  4.2 恆溫氧化 48   4.2.1 氧化動力學 48   4.2.2 鋁化層的相轉換 49  4.3 熱循環氧化 65   4.3.1 氧化動力學 65   4.3.2 微結構變化 66 第六章 結論 82 參考文獻 83

1. G. A. Capuano, A. Dang, U. Bernabai, and F. Felli, “High-Temperature Oxidation and Thermal Cycling of Aluminum- Electroplated Stainless Steels”, Oxidation of Metals, Vol. 39, pp.263-276 (1993).
2. C. J. Wang, J. W. Lee, and T. H. Twu, “Corrosion behaviors of low carbon steel, SUS310 and Fe-Mn-Al alloy with hot-dipped aluminum coatings in NaCl-induced hot corrosion”, Surface and Coatings Technology , Vol. 163-164C, pp.37-64 (2003).
3. T. C. Simpson, “Accelerated corrosion test for aluminum-zinc alloy coatings”, Corrosion, Vol. 49,pp.550 (1993).
4. K. Nishida and T. Narita, “Hot Dip Al Coated Steel Sheet”, 日本金屬學會誌,第35卷,第269頁(1971)。
5. S. M. Chen, Y. Y. Chang, C. J. Wang, and S. H. Liu, "Effect of Si High- Temperature Oxidation Behavior of Hot-Dip Aluminized Low Carbon Steel", 中華民國防蝕工程學會2005年論文發表會論文集,第602~611頁,台灣台中,2005.8.25~26。
6. W. Gao and G. Li, “The development and application of hot-dip aluminum coating”, Heat Treatment of Metals, Vol. 6, pp. 11-15 (1991).
7. P. C. Chen, Y. H. Chang, and C. J. Wang, “High-temperature Oxidation of Hot-Dipping Al-Si Coating in 430 Stainless Steels”, 第四屆海峽兩岸材料腐蝕與防護研討會,pp.741-754(2004)。
8. S. Kobyashi and T. Yakou, “Control of intermetallic compound layers at interface between steel and Aluminum by diffusion-treatment”, Materials Science and Engineering, A338, pp.44-53 (2002).
9. 吳德樺,熔湯鍛造法製造A356鋁合金-中碳鋼疊合材料,國立台灣工業技術學院機械研究所碩士學位論文,民國80年7月,台北。
10. 日本複合材料學會,表面技術雜誌,117期,第135頁(1975)。
11. J. L. Murray and A. J. Mcalister, “Fe-Al phase diagrams”, Binary Alloy Phase Diagrams, pp. 73 (1984).
12. 洪舜立,低碳鋼熱浸鍍鋁之研究,國立台灣工業技術學院機械研究所碩士學位論文,民國82年。
13. L. J. Malone, in: Basic concepts of chemistry, 3rd ed., New York, Wiley, (1989).
14. V. R. Ryabov, “The electron beams welding of steel to aluminum”, Automatic Welding, Vol. 28, pp. 34-37 (1975).
15. W. F. Smith, in: Principles of Material Science and Engineering, McGraw-Hill Publishing Company, USA, pp. 843-844 (1990).
16. Heumann and S.Dittrich, Z. Metallkd, Vol. 50, pp. 617 (1959).
17. T. Saga and O. Miyakawa, “The behavior of outer aluminum layer by heating and its influence on the resistance property to oxidation”,日本金屬學會誌,第22卷,第177-180頁(1956)。
18. B. Liu and R. Li, “Hot-dip aluminizing of steel sheet by flux method iron and steel”, Heat Treatment of Metals, Vol. 17, pp.41-48 (1982).
19. A. Hrbek, “The effect of speed on the thickness of the coating produced during metallizing in liquid metals”, Metal Finishing, pp.298-302 (1961).
20. V. Sivan, “Hot-dip aluminum coating of steel”, Metal Finishing Journal, pp. 21-24 (1980).
21. L. Q. Zhang and H. M. Wang, “High-temperature sliding wear resistance of a Cr3Si/CrC13Ni5Si2 multiphase intermetallic alloy”, Materials Letters, Vol. 57, pp.2710-2715 (2003).
22. D. Lainer and A. Kurakin, Fiz. Met. Metallov, Vol. 18 (1964) pp.145-159.
23. D. O. Gittings, D. H. Rowland, and J. O. Mack, “Effect of bath composition on aluminum”, Transactions of the ASM, Vol. 43, pp.587-610 (1951).
24. Eggeler G. and Vogel H., “Target preparation for transmission electron microscopic identification of the Al3Fe phase in hot-dip aluminized low- alloy steel”, Praktische Metallographie, Vol. 22, pp.163-170 (1985).
25. T. Morinaga and Y. Kato, Journal of Japan Institute of Metals, pp.26-33 (1962).
26. N. Birks and G. H. Meier, in: Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, pp.34-41 (1983).
27. M. V. Akdeniz, A. O. Mekhrabov, and T. Yilmaz, Scri. Metall. Material, pp.49-56 (1989).
28. J. Robertson and M. I. Manning, “Limits to adherence of oxide scales”, Materials Science and Technology, Vol. 6, pp. 81-89 (1990).
29. T. Yamada, N. Sakai, and H. Kawase, “High strength and excellent heat resistant hot-dipped aluminum coated steel sheet”,日新製鋼技報,第56號,第80-87頁(1987)。
30. A. Bahadur and O. N. Mohanty, “Structual studies hot-dip aluminized coatings on mild steel”, Mater Transactions, JIM, Vol. 32, pp. 1053-1061 (1991).
31. J. L. Jordan and S. C. Deevi, “Vacancy formation and effects in FeAl Intermetallics”, Vol. 11, pp. 507-528 (2003).
32. R. E. Reed-Hill and R. Abbaschian, in: Physical Metallurgy Principles, 2nd ed., New York, Van Nostrand, (1973).
33. C. O. Moon and S. B. Lee, “Analysis on failures of protective-oxide layers and cyclic oxidation”, Oxidation of Metals, Vol. 39 pp.1-13 (1993).
34. J. H. Sun, E. Chang, C. H. Chao, and M. J. Cheng, “The spalling modes and degradation mechanism of ZrO2-8wt%Y2O3/ CVD-Al2O3/ Ni-22Cr-10Al-Ly thermal-barrier coatings”, Oxidation of Metals, Vol. 40 pp.465-473 (1993).
35. M. Gobel, A. Rahmel, and M. Schutze, “The cyclic-oxidation behavior of several nickel-base single-crystal superalloys without and with coatings, Oxidation of Metals”, Vol. 41, pp.271-279 (1994).
36. J. D. Kuenzly and D. L. Dougless, “Oxidation Mechanism of Ni3Al Coating Yttrium”, Oxidation of Metals, Vol.8, pp.139 (1974).
37. R. Lahtinen, ”The driving force behind whisker growth”, Whisker Growth, pp. 33-36 (2005).
38. A. S. Khanna, in: High Temperature Oxidation and Corrosion, ASM2002, pp.7-11.
39. 劉孝虹,430熱浸鍍鋁矽於氯化納蒸汽之氧化物鬚晶成長及高溫腐蝕機制,國立台灣科技大學機械研究所碩士論文,民國95年。
40. N. Birks and G. H. Meier, in: Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, pp3-7 (1983).
41. S. P. Gupta, “Intermetallic compound formation in Fe–Al–Si ternary system: Part I”, Materials Characterization vol.49, pp.269-291 (2003).
42. M. Gobel, A. Rahmel, and M. Schutze, “The Cyclic-Oxidation Behavior of Several Nickel-Base Signal-Crystal Superalloys Without and with Coatings”, Oxidation of Metals, vol.41, pp.271-279 (1994).

QR CODE