簡易檢索 / 詳目顯示

研究生: 吳祥豐
Shang-Feng Wu
論文名稱: 以土壤微量元素序列萃取法評估土地再利用--以台灣北部某廢棄金銅精鍊場址為例
Evaluation of land use adaptation by sequential extraction of soil trace elements at an abandoned gold and copper refinery site in northern Taiwan
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 許正一
Zeng-Yei Hseu
朱義旭
Yi-Hsu Ju
余炳盛
Bing-Sheng Yu
曾堯宣
Yao-Hsuan Tseng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 125
中文關鍵詞: 土壤重金屬污染化學形式流動性序列萃取
外文關鍵詞: soil, heavy metal contamination, chemical form, mobility, sequential extraction
相關次數: 點閱:304下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究場址位於台灣北部一座擁有超過百年歷史的金和銅採礦、冶煉和精煉的廢棄工廠。本研究透過場址外的土壤背景調查和砷、銅的序列萃取法,評估該褐地場址的土地再利用的潛力。研究結果,場外背景濃度的上限值為:砷 300 mg/kg 和銅 700 mg/kg。發現場址內土壤砷的濃度係以穩定不易移動的型態為主,如層狀矽酸鹽結合態的形式存在,故於環境中釋出的風險很低。僅原沉澱池、煉金廠、煉銅廠的土壤中的銅,則有較高比例之可移動相態,如酸可萃取態、可還原態及可氧化態等,故具有較高環境釋出的風險;因此,整個場址除了這三個區域的銅環境釋放風險較高外,其餘區域雖然土壤中全量的砷與銅較高,但序列萃取法指出,這兩個重金屬元素從土壤固相裡釋出的風險很低,可進行不接觸土壤或植栽的土地再利用。面對公眾要求開放場址部分步道以促進當地觀光發展的需求,可透過適當的控制和隔離措施,阻絕重金屬藉由土壤食入、皮膚接觸等暴露途徑而影響人體健康。在各項污染控制方面,降低揚塵吸入也是選項之一,最終使健康風險降低至可接受程度,而達成污染場址土地永續利用之目標。


    This study site is located at an abandoned factory of mining, smelting, and refining of gold and copper in north Taiwan for more than one hundred years. The present study used soil background investigation out of the site and the sequential extraction procedures for arsenic and copper to assess the reutilization potential of brownfields at the site. The upper limit of background concentration out of the site was 300 mg/kg for arsenic and 700 mg/kg for copper. The soil arsenic within the site was mainly in the immobile fraction such as forms fixed by layer silicates that was very low risk for environmental releases. The soil copper in the abandoned sedimentation basin, gold refinery, and copper refinery was in the mobile fractions such as acid extractable, reducible, and oxidizable forms with higher release risk; therefore, except merely those three zones in the entire site with higher risk for environmental releases of copper, the release risks of trace elements are quite low in rest of the areas, and land reuse without contact with soil or plant non-edible plants is possible. Therefore, in response to public demand for opening part of the site to promote local tourism development, appropriate control and isolation measures can be implemented to prevent the toxic elements from affecting human health through soil ingestion, skin contact, and other exposure pathways. In terms of pollution control, reducing dust inhalation is also an option to efficiently reduce health risks to an acceptable level and achieve the goal of sustainable land use at the contaminated site.

    摘要 圖目錄 表目錄 第一章 緒論 1 1.1 研究背景 1 1.2 研究對象與目的 2 第二章 文獻回顧 3 2.1 土壤污染 3 2.2 礦區褐地再利用案例 7 2.3 地質及土壤文獻 20 2.4 曾實施之調查 30 2.5 土壤重金屬濃度序列萃取法 37 2.6 土壤樣品砷價態分析法 40 2.7 土壤污染物及其特性 41 第三章 研究方法 55 3.1 場址外土壤重金屬背景濃度調查方法 55 3.2 重金屬濃度之序列萃取試驗 57 3.3 土壤樣品砷價態分析方法 61 第四章 研究結果 62 4.1 礦業遺跡調查結果 62 4.2 場址外土壤重金屬背景濃度調查結果 67 4.3 土壤重金屬濃度序列萃取分析結果 71 4.4 土壤樣品砷價態分析結果 87 4.5 褐地再利用分析 88 第五章 結論與建議 92 5.1 結論 92 5.2 建議 92 參考文獻 93 附錄 99

    1.台灣電力股份有限公司、台灣糖業股份有限公司,「原台灣金屬鑛業股份有限公司濂洞煉銅廠及其所屬三條廢煙道地區(部分)土壤及地下水污染控制場址」總體成果報告書(含驗證工作),2014年~2021年。
    2.台灣電力股份有限公司,1994,原台金舊煉銅廠煙道含砷化物等最佳處理方案規劃報告。
    3.台灣電力股份有限公司,2006,原台金公司濂洞煉銅廠遺留三條廢煙道之環境影響與人體健康風險評估作業計畫期末報告,瑞昶科技股份有限公司執行。
    4.台灣電力股份有限公司、台灣糖業股份有限公司,「原台灣金屬鑛業股份有限公司及其所屬三條廢煙道 地區(部分)土壤及地下水污染整治場址土壤、地下水污染 調查及評估報告書」,2021年。
    5.中華文化總會,2019,點亮十三層,https://www.gacc.org.tw/events/light-up-13layer-remains。
    6.王宏韜,1983,金銀銅鑛業-冶煉與加工,臺灣鑛業史續一冊(1964-1979年),P.436-438。
    7.朱明昭,台灣礦業發展困境與展望,鑛冶,第59卷第1期,第11-15頁,2015。
    8.行政院環境保護署,2009,2009-2010年度土壤及地下水污染事件應變調查、查證及技術支援工作計畫期末報告(EPA-98-GA102-03-A205)-9803案台北縣原台金舊煉銅廠三條廢煙道附近地區土壤污染查證報告。
    9.行政院環境保護署,2010,廢棄工廠土壤及地下水污染潛勢第四期調查計畫(乙)(EPA-98-GA10-03-A075之2)-98-40台灣金屬鑛業股份有限公司調查成果(調查工廠代碼230026)。
    10.行政院環境保護署,2015,土壤及地下水污染場址健康風險評估作業手冊。
    11.行政院環境保護署,2016,2015年推動我國以風險分析系統進行土壤及地下水污染場址管理工作計畫,附錄三,土壤及地下水污染場址生態風險評估方法草案。
    12.行政院環境保護署,污染土壤處理技術可行性研析計畫期末報告,2020。
    13.行政院環境保護署,健康風險評估系統,2017, https://sgw.epa.gov.tw/ Risksystem/Default.aspx。

    14.何恭算 、王士偉、戴昌鳳,2009,彭佳嶼、棉花嶼、花瓶嶼及基隆嶼之地質與地形資源,國家公園學報2009年第19卷第4期
    15.余炳盛,1999,土壤重金屬含量與其地質環境之關係,大漢學報,第 13 期, 169-184 頁。
    16.余炳盛,2005,陽明山國家公園土壤重金屬含量及地質特性對土壤性質影響 之研究,國家公園學報,第 15 卷第 2 期,65-87 頁
    17.李文鐘,1990,「選礦學(全)」,世界書局印行。
    18.林浚泉,1970,臺灣銅礦之選礦,鑛冶,第14卷第4期,第48-58頁。
    19.林浚泉,1983,台金五萬噸煉銅廠之建立,鑛冶,第27卷第4期,第27-39頁。
    20.財政部國有財產局、新北市政府、新北市瑞芳區公所、台灣糖業股份有限公司、台灣電力股份有限公司,2011,「原台灣金屬鑛業股份有限公司及其所屬三條廢煙道地區(部分)土壤及地下水污染控制場址」健康風險評估報告(定稿本)。
    21.許正一、楊家語,2019,從農田重金屬污染整治到土壤煉金術-農業採礦的發想,科學月刊,第448期。
    22.許振宏、駱尚廉,2000,兩種污染土壤中重金屬化學型態之研究,台東師院學報,國立台東師範學院,11(2):247-263。
    23.陳文山主編,臺灣地質概論,中華民國地質學會,2016年6月。
    24.陳垚,1977,台灣煉銅工業,鑛冶,第21卷第2期,第14-21頁。
    25.陳尊賢,1997,台灣地區受重金屬污染土壤之整治經驗與評估。第五屆土壤污染防治研討會論文集,台灣大學農業化學系,台北市。
    26.陳尊賢、陸瑩、黃東亮、吳芳娥,1992,台灣地區主要農業土壤中重金屬之鹽酸抽出量與全量之相關性。第三屆土壤污染防治研討會論文集。
    27.陳隆軒、王宏韜,1970,臺金之冶煉作業及展望,鑛冶,第14卷第4期,第59-65頁。
    28.童翔新、羅良慧,1997,土壤鎘污染危害評價系統建立之研究。第十屆環境規劃與管理研討會論文集,逢甲大學環境工程與科學系,台中市,p.37-44。
    29.黃如宏、陳尊賢、張仲民,不同萃取劑對台灣代表性土壤中金屬之萃取效果比較。中國農業化學會誌,26(4),1988。
    30.新北市環保局,2017,土壤及地下水污染調查及查證工作計畫期末報告。
    31.經濟部中央地質調查所,2020,雙溪圖幅環境地質圖。
    32.經濟部國營事業委員會,1995,水湳洞地區酸鑛水整治可行性研究計畫報告。
    33.臺北縣立黃金博物館,2007,鍊煉礦山:水湳洞選煉廠特展。
    34.臺北縣立黃金博物館,2009,水湳洞選煉廠及其周邊遺址文化景觀研究調查案,中國科技大學執行(波多野 想主持)
    35.臺北縣立黃金博物館,2010,金瓜石地方礦業史研究調查,中國科技大學執行(波多野 想主持)。
    36.劉鎮宗,1995,砷與生態環境的關係。科學月刊,第26卷,第一期,134-140。
    37.賴允傑、何秉宜、劉泰銘、余炳盛,土壤背景重金屬濃度調查,環境工程月刊第3期P 38-52,2012。
    38.賴允傑、莊珮嘉、李依庭、洪英修、黃泰祥、陳慎德、許正一、蔡呈奇、余炳盛、陳尊賢,2018,台灣土壤重金屬背景濃度之建立及探討,土壤及地下水污染整治;5卷3期,P143 – 162。
    39.駱淑蓉,2016,硫砷銅礦的發現與金瓜石礦山,新北市立黄金博物館學刊,第4期,第76-93頁。
    40.譚立平、陳正宏,台灣金屬經濟礦物,台灣大學地質學研究所,1994。
    41.譚立平、魏稽生編著,1997,臺灣金屬經濟礦物,經濟部中央地質調查所編印。
    42.蘇英源、郭金國編,2000,「冶金學」,臺北,全華書局。
    43.蘇紹瑋、陳尊賢,2009,現行土壤砷全量檢測方法之檢討與替代方法之可行性評估,2009 環境分析化學研討會大會手冊,Poster-54。
    44.鐘淑敏,1997,殖產方略-台灣產業開發,立虹出版社。
    45.鑛冶期刊編輯室,1970,臺金的礦業鑛冶,第14卷第4期,第9-12頁。
    46.Agency for Toxic Substances and Disease Registry ( ATSDR ) , Toxicological Profile for Arsenic, U.S. Department of health and human service Public Health Service Agency, 2007 .
    47.Alloway, B.J. ; Heavy Metals in Soils. Blackie Academic and Professional, Chapman and Hall, London, 368 , 1995. https://doi.org/10.1007/978-94-011-1344-1
    48.Bartlett , R.J. ; Chromium Cycling in Soils: Links, Gaps, and Methods. Environmental Health Perspectives,1991, 92 , 17-24. http://dx.doi.org/10.1289/ehp.919217
    49.Bülent SAĞLAM ; Ayla BİLGİN ; Mustafa AYBAR ; Assessment of Heavy Metal Pollution in Soil and Sediments of Murgul Copper Mine and Its Surroundings , Kastamonu Uni., Orman Fakültesi Dergisi, 2020, 20(1): 25-37 Research Article Kastamonu Univ., Journal of Forestry Faculty Doi: 10.17475/kastorman.705816.
    50.California Environmental Protection Agency , Office of Environmental Health Hazard Assessment (Cal EPA-OEHHA) , 2007 , https://oehha.ca.gov/
    51.Demková, L.; Jezný, T.; Bobul’ská, L. ; Assessment of soil heavy metal pollution in a former mining area—Before and after the end of mining activities. Soil Water Res. 2017, 12, 229–236. [CrossRef]
    52.Denkhaus , E. and Salnikow,K. ; Nickel essentiality, toxicity, and carcinogenicity, The National Center for Biotechnology Information advances science and health ,2002.
    53.FAO; UNEP. ; Global Assessment of Soil Pollution: Report. Rome. 2021. Available online: https://doi.org/10.4060/cb4894en (accessed on 9 April 2022). [CrossRef]
    54.Fernández. A.; Pérez-Cid, B.; Fernández, E.; Falqué, E. ; Comparison between sequential extraction procedures and single extractions for metal portioning in sewage sludge samples. Analyst 2000, 125, 1353–1357.
    55.Förstner U. ; Metal speciation in solid wastes - factors affecting mobility [in:] Speciation of Metals in Water, Sediment and Soil Systems , Landner W. (ed.), Springer-Verlag, Berlin-Hiedelberg-New York-London-Paris-Tokyo, pp. 13-40 ,1986.
    56.Gerendas J. ; Sattelmacher B. ; Influence of Ni supply on growth and nitrogen metabolism of Brassica napus L. grown with NH4NO3 or urea as N source. Ann Bot 83:65–71,1999.
    57.Government of Canada. ; Northern Abandoned Mine Reclamation Program. Available online: https://www.rcaanc-cirnac.gc.ca/ eng/1565968579558/1565968604553 (accessed on 12 April 2022).
    58.HE, Z. ; SHENTU, J. ; YANG, X. ; BALIGAR, V.C. ; ZHANG, T.; STOFFELLA, P.J. ; Heavy Metal Contamination of Soils: Sources, Indicators, and Assessment ; Journal of Environmental Indicators, 9:17-18, 2015.
    59.Heike, B.B. ; Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interf. Sci. 277:1-18,2004.
    60.ITRC (The Interstate Technology and Regulatory Council). ; Soil Background and Risk Assessment Guidance. Available online: https://sbr-1.itrcweb.org/ (accessed on 9 April 2022).
    61.Kabata-Pendias, A. and H.,Pendias. Trace elements in soil and plants 3rd. CRC Press. 2001 : Boca Raton, Florida, USA.
    62.Kabata-Pendias, A. and H., Pendias., Trace Elements in Soils and Plants, 4th ed.; CRC Press 2011 : Boca Raton, FL, USA; 353–361. 13 .
    63.Karachaliou, T. ; Protonotarios, V.; Kaliampakos, D.; Menegaki, M. ; Using Risk Assessment and Management Approaches to Develop Cost-Effective and Sustainable Mine Waste Management Strategies. Recycling 2016, 1, 328–342. [CrossRef] Sustainability 2022, 14, 6423 14 of 14
    64.Kersten M. ; Förstner U. ; Speciation of trace elements in sediment [in:] Trace Element Speciation: Analytical Methods and Problems, Batley, G. (ed.), Boca Raton, CRC Press 1989 , 245.
    65.Kierczak, J. ; Neel, C. ; Aleksander-Kwaterczak, U. ; Helios-Rybicka, E.; Bril, H.; Puziewicz, J. ; Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere 2008, 73, 76–784. [CrossRef] [PubMed]
    66.Ma, L. Q., and Rao, G. N. ; Chemical fractionation of cadmium , copper, nickel,and zinc in contaminated soils, J. Environ. Qual. 1997 , 26, 259-264.
    67.Magdalena Tarnawczyk ; Łukasz Uzarowicz ; Katarzyna Perkowska-Pióro ; Artur Pędziwiatr and Wojciech Kwasowski ; Technosols Developed on the Tailing Disposal Site of an Abandoned Zn and Pb Mine ; Minerals 2021,11(6),559 ; https://doi.org/10.3390/min11060559.
    68.Marschner,H. ; Mineral Nutrition of Higher Plants. 2nd Edition , Academic press, Amsterdam,2002.
    69.McGrath, S.P. ; Chromium and nickel. In: B.J. Alloway (ed), Heavy Metals in Soils, Blackie Academic & Professional, New York, pp. 154-178 ,1995.
    70.Meguellati M ; Robbe D ; Marchandise P ; Astruc M. ; Proceedings of the International Conference on Heavy Metals in the Environment, Heidelberg, 1090 , 1983.
    71.Miller, W. P. and McFee, W. W. ; Distribution of cadmium, zinc, copper, and lead in soils of industrial northwestern Indiana, J. Environ. Qual. 1983. , 12 , 29-33.
    72.Palmer, C.D. and P.R. Wittbrodt ; Processes affecting the remediation of chromium-contaminated sites. Environmental Health Perspectives 1991. 92:25-40.
    73.Payá Pérez , A.; Rodríguez Eugenio, N. ; Status of Local Soil Contamination in Europe : Revision of the Indicator “Progress in the Management Contaminated Sites in Europe; EUR 29124 EN ; Publications Office of the European Union: Luxembourg. 2018. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC107508 (accessed on 9 April 2022).
    74.Rao, K.V.M. and Sresty, T.S. ; Antioxidative Parameters in the Seedlings of Pigeon Pea (Cajanuscajan (L.) Millsp.) in Response to Zn and Ni Stresses. Plant Science, 157, 113-128 , 2000 . http://dx.doi.org/10.1016/S0168-9452(00)00273-9
    75.Ramos, L. ; Hernandez, L. M. ; and Gonzalez, M. J. ; Sequenital fractionation of copper, lead, cadmium and zinc in soils from or near Donana National Park, J. Environ. Qual. , 1994 . , 23 , 50-57
    76.Rauret, G. ; Extraction Procedures for the Determination of Heavy Metals in Contaminated Soil and Sediment. Talanta 1998, 46, 449–455. [CrossRef]
    77.Rauret, G. ; Rubio, R. ; Lopez-Sanchez, J. R. ; Casassas, E. ; Specific procedure for metal solid speciation in heavily polluted river sediments , Int. J. Environ. Anal. Chem. , 1989 , 35, 89-100.
    78.Rinklebe, J. ; Shaheen, S.M. ; Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River, Germany. ; Water Air Soil Pollut. , 2014 , 225, 2039–2058, [CrossRef]
    79.R.S.Bowman,M.E. ; Essington,G.A. ; O Connor ; Soil Sorption of Nickel: Influence of Solution Composition , Journal Article no. 872, Agric. Exp. Stn. ,1981 , New Mexico State Univ., Las Cruces, NM 88003
    80.Salomons, W. and Forstner, U. ; Metals in the Hydrocycle. Springer-Verlag, Berlin , Heidelberg , New York , Tokyo,1984. https://doi.org/10.1007/978-3-642-69325-0.
    81.Shuman, L. M. ; Fractionation method for soil microelements, Soil Sci. , 1985 , 140 , 11-22.
    82.Sposito, G. ; Jund, L. J. ; Chang, A. C. ; Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn,Cd, and Pb in solid phases, Soil Sci. Soc. Am. J. , 1982, 46 , 260-264.
    83.Stevenson, F. J. ; “Humus Chemistry: Genesis, Composition, Reactions,” 2nd Edition, 1994, John Wiley and Sons Ltd., New York.
    84.Tack, F.M.G. ; Singh, S.P.; Verloo, M.G. ; Leaching behaviour of Cd, Cu, Pb and Zn in surface soils derived from dredged sediments. Environ. Pollut., 1999, 106, 107–114. [CrossRef]
    85.Takeno, N. ; Atlas of Eh-pH diagrams,National Institute of Advanced Industrial Science and Technology Research Center for Deep Geological Environments , 2005 .
    86.Tessier, A.; Campbell, P.G.C.; Bisson, M. ; Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 7 , 844–851. [CrossRef]
    87.U.S. Government Accountability Office ; Abandoned Hardrock Mines-Information on Number of Mines, Expenditures, and Factors that Limit Efforts to Address Hazards. Report to the Ranking Member of the Subcommittee on Interior, Environment, and Related Agencies, Committee on Appropriations, U.S. Senate. 2020. Available online: https://www.gao.gov/products/gao20-238 (accessed on 12 April 2022).
    88. Ulrich Förstner ; Chemical forms and reactivities of metals in sediments, Technische Universität Hamburg ,1985.
    89.Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. ; Speciation of heavy metals in soils and sediments ; An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. , 1993 , 51 , 135–151. [CrossRef]
    90.USA Environmental Protection Agency ; Region 8, Sixth Five-Year Review Report for Anaconda Co. Smelter Superfund Site, Deer Lodge County, Montana; U.S. Environmental Protection Agency, Region 8, 2020.: Denver, CO. USA .
    91.USA Environmental Protection Agency ; Regional Screening Levels (RSLs)—User’s Guide. 2021. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide (accessed on 12 April 2022).
    92.USA Environmental Protection Agency ; Statistical Software ProUCL 5.1.00 for Environmental Applications for Data Sets with and without Nondetect Observations. Available online: https://www.epa.gov/land-research/proucl-software (accessed on 22 March 2022)
    93.Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. ; Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta, 2001 , 436, 309–323 [CrossRef]
    94.WHO.; Urban Redevelopment of Contaminated Sites: A Review of Scientific Evidence and Practical Knowledge on Environmental and Health issues; WHO Regional Office for Europe: Copenhagen, Denmark, 2021.
    95.World Health Organization (WHO) ; Environmental Health Criteria 224: Arsenic and arsenic compounds, 2nd edition. Office of Publications, World Health Organization, Geneva, Switzerland,2001.
    96.Xian, X. ; Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants, Plant Soil,1989, 113, 257-264.

    無法下載圖示 全文公開日期 2025/09/02 (校內網路)
    全文公開日期 2025/09/02 (校外網路)
    全文公開日期 2025/09/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE