簡易檢索 / 詳目顯示

研究生: 呂飛
Lutfi Yunus Wahab Al Audhah
論文名稱: Sn-9Zn 和 Cu 合金(C1990 HP、C194 和合金 25)偶的固態/固態界面反應
Interfacial Reactions in the Solid/Solid State of Sn-9Zn and Cu Alloys (C1990 HP, C194, and Alloy 25) Couples
指導教授: 顏怡文
Yee-wen Yen
口試委員: 施劭儒
Shao-Ju Shih
陳志銘
Chih Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 95
中文關鍵詞: 金屬間化合物Sn-9Zn無鉛焊料Sn隧道現象破裂的銅鋅金屬間化合物活化能
外文關鍵詞: Intermetallic Compounds, Sn-9Zn lead free solder, Sn tunneling phenomena, Ruptured Cu-Zn intermetallic, Activation energy
相關次數: 點閱:233下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

焊料/基板耦合界面中的大塊金屬間化合物厚度往往會降低焊點的可靠性並表現出較差的機械性能。擴散阻擋層的作用可以通過形成相抑制金屬間化合物層的生長或抑制金屬間化合物層的厚度。然而,在 Sn-9Zn/Cu 偶合界面上形成的 Cu-Zn 金屬間化合物可能會抑制金屬間化合物的生長和 Cu-Sn 相的形成。對 SZ/C1990 HP、SZ/C194 和 SZ/Alloy 25 對在固/固反應過程中的 IMC 生長進行了動力學分析,該過程在 240℃回流 15s 和 100 至 2000 h 等溫時效期間進行。在 SZ/C1990 HP 電偶中,ε-CuZn5 和 γ-Cu5Zn8 相在早期形成,並且在較高的反應溫度和時間下,ε-CuZn5 相轉變為 γ-Cu5Zn8 相。在 SZ/C194 對中,只有 γ-Cu5Zn8 相在老化早期形成。 Sn 隧穿現象促進了在較高溫度和反應時間下形成的 Cu-Sn 金屬間化合物相。 η-Cu6Sn5相的金屬間化合物在富Sn基體周圍生長並消耗C194基體中的Cu原子。在 SZ/Alloy 25 對中,ε-CuZn5 和 γ-Cu5Zn8 相在時效早期形成,並且在較高的反應溫度和時間下仍然觀察到,這對中沒有相變。所有反應對的 IMC 生長都被認為是擴散控制機制。整體 IMC 生長所需的活化能在 SZ/C1990 HP 上為 51.5 kJ/mol,在 SZ/C194 上為 87.0 kJ/mol,在 SZ/Alloy 25 上為 45.7 kJ/mol


Bulk intermetallic thickness in solder/substrate couple interface tends to degrade the solder joint reliability and perform poor mechanical properties. The role of diffusion barrier layer could inhibit the growth of the intermetallic layer by forming phases or suppressed the thickness of the intermetallic layer. However, Cu-Zn intermetallic phase that form on Sn-9Zn/Cu couples interface may inhibit the growth of the intermetallic and Cu-Sn phase formation. A kinetic analysis of the IMC growth between SZ/C1990 HP, SZ/C194 and SZ/Alloy 25 couples during solid/solid state reaction was performed during reflow at 240℃ for 15s and isothermal aging from 100 to 2000 h. In the SZ/C1990 HP couples, the ε-CuZn5 and γ-Cu5Zn8 phases were formed at early stage and the ε-CuZn5 phase was transformed to γ-Cu5Zn8 phase at higher reaction temperature and time. In the SZ/C194 couples, only γ-Cu5Zn8 phase formed at early stage of aging. The Sn tunneling phenomena promotes Cu-Sn intermetallic phase formed at the higher temperature and reaction time. The intermetallic of η-Cu6Sn5 phase was grew around the Sn-rich matrix and consume the Cu atom in C194 substrate. In the SZ/Alloy 25 couples, the ε-CuZn5 and γ-Cu5Zn8 phases were formed at early stage of aging and still observed at higher reaction temperature and time, there is no phase transformation in this couples. IMC growth for all the reaction couples were concluded as diffusion-controlled mechanism. The activation energy required for overall IMC growth was at 51.5 kJ/mol on SZ/C1990 HP, 87.0 kJ/mol on SZ/C194 and 45.7 kJ/mol on SZ/Alloy 25 couples

Contents Abstract ii List of Figure vi List of Table viii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 SZ Lead Free Solders Alloy 3 2.2 Copper Alloy Lead Frame Materials 4 2.3 Interactions between Substrate and Solder 6 2.3.1 Solid/Liquid Reaction 7 2.3.2 Solid/Solid Reaction 7 2.3.3 Intermetallic in Solder 8 2.3.4 Dissolution and Intermetallic Growth 9 2.3.5 Formation of Cu-Sn Interfacial Intermetallic 11 2.3.6 Formation of Cu-Zn Interfacial Intermetallic 13 2.4 Phase Diagram 16 2.4.1 Cu-Sn Binary Alloy Phase Diagram 17 2.4.2 Cu-Zn Binary Alloy Phase Diagram 19 2.4.3 Cu-Zn-Sn Ternary Alloy Phase Diagram 20 2.5 Phenomena Regarding to IMC 22 Chapter 3 Experimental Procedures 26 3.1 Preparation of Lead Free Solder and Substrates 26 3.2 Preparation of Lead-free Solder/Substrates Reaction Couples 26 3.3 Metallographic Procedure, Interface Observation and Analysis 26 3.4 Schematic Experimental Procedures 28 Chapter 4 Results and Discussion 29 4.1 Interfacial Reactions in the SZ/C1990 HP Couples 30 4.1.1 Interfacial Reaction in the SZ/C1990 HP Couples at 125 ℃ 31 4.1.2 Interfacial Reaction in the SZ/C1990 HP Couples at 150 ℃ 35 4.1.3 Interfacial Reaction in the SZ/C1990 HP Couples at 175 ℃ 38 4.2 Interfacial Reactions in the SZ/C194 Couples 41 4.2.1 Interfacial Reaction in the SZ/C194 Couples at 125 ℃ 41 4.2.2 Interfacial Reaction in the SZ/C194 Couples at 150 ℃ 45 4.2.3 Interfacial Reaction in the SZ/C194 Couples at 175 ℃ 49 4.3 Interfacial Reactions in the SZ/Alloy 25 Couples 52 4.3.1 Interfacial Reaction in the SZ/Alloy 25 Couples at 125 ℃ 52 4.3.2 Interfacial Reaction in the SZ/Alloy 25 Couples at 150 ℃ 55 4.3.3 Interfacial Reaction in the SZ/Alloy 25 Couples at 175 ℃ 57 4.4 Reaction Kinetics 60 Chapter 5 Conclusions 69 References 70 Appendix 78

[1] J.W. Yoon, S.B. Jung, Reliability Studies of Sn-9Zn/Cu Solder Joints with Aging Treatment, Journal of Alloys and Compounds. 407 (2006) 141-149. https://doi.org/10.1016/j.jallcom.2005.06.047.
[2] Y.W. Yen, A.D. Laksono, C.Y. Yang, Investigation of the Interfacial Reactions between Sn-3.0 wt%Ag-0.5 wt%Cu Solder and Cu-Ti Alloy (C1990HP), Microelectronics Reliability. 96 (2019) 29-36. https://doi.org/10.1016/j.microrel.2019.03.006.
[3] S. Menon, E. George, M. Osterman, M. Pecht, High Lead Solder (Over 85 %) Solder in the Electronics Industry: RoHS exemptions and alternatives, Journal of Materials Science: Materials in Electronics. 26 (2015) 4021-4030. https://doi.org/10.1007/s10854-015-2940-4.
[4] T. Takahashi, S. Komatsu, H. Nishikawa, T. Takemoto, Improvement of High-Temperature Performance of Zn-Sn Solder Joint, Journal of Electronic Materials. 39 (2010) 1241-1247. https://doi.org/10.1007/s11664-010-1233-1.
[5] X. Niu, K.L. Lin, Investigations of the Wetting Behaviors of Zn-25Sn, Zn-25Sn-xPr and Zn-25Sn-yAl high temperature Lead Free Solders in Air and Ar Ambient, Journal of Alloys and Compounds. 646 (2015) 852-858. https://doi.org/10.1016/j.jallcom.2015.06.185.
[6] Y.S. Kim, K.S. Kim, C.W. Hwang, K. Suganuma, Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn-Zn-Bi Alloys, Journal of Alloys and Compounds. 352 (2003) 237-245. https://doi.org/10.1016/S0925-8388(02)01168-4.
[7] K.S. Kim, T. Matsuura, K. Suganuma, Effects of Bi and Pb on Oxidation in Humidity for Low-Temperature Lead-Free Solder Systems, Journal of Electronic Materials. 35 (2006) 41-47. https://doi.org/10.1007/s11664-006-0182-1.
[8] Q. Li, Y.C. Chan, K. Zhang, K.C. Yung, Study of Microstructure Evolution in Novel Sn-Zn/Cu bi-layer and Cu/Sn-Zn/Cu Sandwich Structures with Nanoscale Thickness for 3D Packaging Interconnection, Microelectronic Engineering. 122 (2014) 52-58. https://doi.org/10.1016/j.mee.2014.03.002.
[9] K. Suganuma, K.S. Kim, Sn-Zn Low Temperature Solder, Journal of Materials Science: Materials in Electronics. 18 (2007) 121-127. https://doi.org/10.1007/s10854-006-9018-2.
[10] K. Suganuma, T. Murata, H. Noguchi, Y. Toyoda, Heat resistance of Sn-9Zn Solder/Cu Interface with or Without Coating, Journal of Materials Research. 15 (2000) 884-891. https://doi.org/10.1557/JMR.2000.0126.
[11] N. Zhao, Y. Zhong, M.L. Huang, W. Dong, H.T. Ma, Y.P. Wang, In situ Study on Interfacial Reactions of Cu/Sn-9Zn/Cu Solder Joints Under Temperature Gradient, Journal of Alloys and Compounds. 682 (2016) 1-6. https://doi.org/10.1016/j.jallcom.2016.04.282.
[12] X. Zhu, J. Peng, X. Wei, P. Yan, F. Wang, Interfacial Reaction and Microstructure Evolution of Sn-9Zn/Ni(Cu) solder joints, Metals. 9 (2019) 1-11. https://doi.org/10.3390/met9050604.
[13] J. Pstruś, Early Stages of Wetting of Copper by Sn-Zn Eutectic Alloy, Journal of Materials Science: Materials in Electronics. 29 (2018) 20531-20545. https://doi.org/10.1007/s10854-018-0197-4.
[14] K.S.Æ.K. Kim, Sn - Zn low temperature solder, (2006) 121-127.
[15] M.N. Islam, Y.C. Chan, M.J. Rizvi, W. Jillek, Investigations of Interfacial Reactions of Sn-Zn based and Sn-Ag-Cu Lead-Free Solder Alloys as Replacement for Sn-Pb Solder, Journal of Alloys and Compounds. 400 (2005) 136-144. https://doi.org/10.1016/j.jallcom.2005.03.053.
[16] Y.C. Chan, M.Y. Chiu, T.H. Chuang, Intermetallic Compounds Formed during the Soldering Reactions of Eutectic Sn-9Zn with Cu and Ni Substrates, Zeitschrift Fuer Metallkunde/Materials Research and Advanced Techniques. 93 (2002) 95-98. https://doi.org/10.3139/146.020095.
[17] H.M. Lee, S.W. Yoon, B.J. Lee, Thermodynamic Prediction of Interface Phases at Cu/Solder Joints, Journal of Electronic Materials. 27 (1998) 1161-1166. https://doi.org/10.1007/s11664-998-0065-8.
[18] C.Y. Chou, S.W. Chen, Y.S. Chang, Interfacial Reactions in the Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni couples, Journal of Materials Research. 21 (2006) 1849-1856. https://doi.org/10.1557/jmr.2006.0229.
[19] Y.C. Li, C.H. Chang, A.S. Pasana, H.M. Hsiao, Y.W. Yen, Interfacial Reactions in Lead-Free Solder/Cu-2.0Be (Alloy 25) Couples, Journal of Electronic Materials. 50 (2021) 903-913. https://doi.org/10.1007/s11664-020-08693-8.
[20] A.D. Laksono, J.S. Chang, J. Yan, Y.W. Yen, Interfacial Reaction between Sn and Cu-Ti alloy (C1990HP), Materials Science Forum. 964 MSF (2019) 263-269. https://doi.org/10.4028/www.scientific.net/MSF.964.263.
[21] S. Vaynman, G. Ghosh, M.E. Fine, Some Fundamental Issues in the Use of Zn-Containing Lead-Free Solders for Electronic Packaging, Materials Transactions. 45 (2004) 630-636. https://doi.org/10.2320/matertrans.45.630.
[22] J.E. Lee, K.S. Kim, K. Suganuma, M. Inoue, G. Izuta, Thermal Properties and Phase Stability of Zn-Sn and Zn-In alloys as High Temperature Lead-Free Solder, Materials Transactions. 48 (2007) 584-593. https://doi.org/10.2320/matertrans.48.584.
[23] J. Pstruś, P. Fima, T. Gancarz, Wetting of Cu and Al by Sn-Zn and Zn-Al Eutectic Alloys, Journal of Materials Engineering and Performance. 21 (2012) 606-613. https://doi.org/10.1007/s11665-012-0174-7.
[24] L. Zhang, L. Sun, Y.H. Guo, C.W. He, Reliability of Lead-Free Solder Joints in CSP Device Under Thermal Cycling, Journal of Materials Science: Materials in Electronics. 25 (2014) 1209-1213. https://doi.org/10.1007/s10854-014-1711-y.
[25] S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders, Journal of Electronic Materials. 38 (2009) 266-272. https://doi.org/10.1007/s11664-008-0550-0.
[26] G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, A Review on the Interfacial Intermetallic Compounds between Sn-Ag-Cu based Solders and Substrates, Journal of Materials Science: Materials in Electronics. 21 (2010) 421-440. https://doi.org/10.1007/s10854-010-0086-y.
[27] D.M. Jacobson, Principles of Soldering Giles Humpston, 2004. www.asminternational.orgwww.asminternational.org.
[28] D.Q. Yu, C.M.L. Wu, D.P. He, N. Zhao, L. Wang, J.K.L. Lai, Effects of Cu Contents in Sn-Cu Solder on the Composition and Morphology of Intermetallic Compounds at a Solder/Ni Interface, Journal of Materials Research. 20 (2005) 2205-2212. https://doi.org/10.1557/JMR.2005.0275.
[29] D. Shangguan, Lead-Free Solder, 2005.
[30] S.J. Hsu, C.C. Lee, Growth Kinetics of Intermetallic Compounds between Sn and Fe Liquid-Solid Reaction Couples, Journal of Electronic Packaging, Transactions of the ASME. 138 (2016) 1-5. https://doi.org/10.1115/1.4034842.
[31] G. Ren, I.J. Wilding, M.N. Collins, Alloying Influences on Low Melt Temperature SnZn and SnBi Solder Alloys for Electronic Interconnections, Journal of Alloys and Compounds. 665 (2016) 251-260. https://doi.org/10.1016/j.jallcom.2016.01.006.
[32] N. Jiang, L. Zhang, Z.Q. Liu, L. Sun, W.M. Long, P. He, M.Y. Xiong, M. Zhao, Reliability Issues of Lead-Free Solder Joints in Electronic Devices, Science and Technology of Advanced Materials. 20 (2019) 876-901. https://doi.org/10.1080/14686996.2019.1640072.
[33] L.M. Lee, A.A. Mohamad, Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A review, Advances in Materials Science and Engineering. 2013 (2013). https://doi.org/10.1155/2013/123697.
[34] L. Ma, Y. Zuo, S. Liu, F. Guo, A. Lee, K.N. Subramanian, Whisker Growth Behaviors in POSS-silanol Modified Sn3.0Ag0.5Cu Composite Solders, Journal of Alloys and Compounds. 657 (2016) 400-407. https://doi.org/10.1016/j.jallcom.2015.09.266.
[35] D.Q. Yu, L. Wang, The Growth and Roughness Evolution of Intermetallic Compounds of Sn-Ag-Cu/Cu Interface During Soldering Reaction, Journal of Alloys and Compounds. 458 (2008) 542-547. https://doi.org/10.1016/j.jallcom.2007.04.047.
[36] J. Bang, D. Yu, Y. Ko, H. Nishikawa, C. Lee, Intermetallic Compound Formation and Mechanical Property of Sn-Cu-xCr/Cu Lead-Free Solder Joint Micro-Joining Center , Korea Institute of Industrial Technology, (n.d.).
[37] I. Shohji, T. Nakamura, F. Mori, S. Fujiuchi, Interface Reaction and Mechanical Properties of Lead-Free Sn-Zn alloy/Cu joints, Materials Transactions. 43 (2002) 1797-1801. https://doi.org/10.2320/matertrans.43.1797.
[38] K. Suganuma, K. Niihara, T. Shoutoku, Y. Nakamura, Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu, Journal of Materials Research. 13 (1998) 2859-2865. https://doi.org/10.1557/JMR.1998.0391.
[39] T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, J.K. Kivilahti, Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu, Journal of Materials Research. 17 (2002) 291-301. https://doi.org/10.1557/JMR.2002.0042.
[40] K.S. Bae, S.J. Kim, Interdiffusion Analysis of the Soldering Reactions in Sn-3.5Ag/Cu couples, Journal of Electronic Materials. 30 (2001) 1452-1457. https://doi.org/10.1007/s11664-001-0201-1.
[41] J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial Reaction in Cu/Sn/Cu System During the Transient Liquid Phase Soldering Process, Acta Materialia. 59 (2011) 1198-1211. https://doi.org/10.1016/j.actamat.2010.10.053.
[42] Y. Takaku, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Interfacial Reaction and Morphology Between Molten Sn Base Solders and Cu Cubstrate, Materials Transactions. 45 (2004) 646-651. https://doi.org/10.2320/matertrans.45.646.
[43] B.J. Lee, N.M. Hwang, H.M. Lee, Prediction of Interface Reaction Products between Cu and Various Solder Alloys by Thermodynamic Calculation, Acta Materialia. 45 (1997) 1867-1874. https://doi.org/10.1016/S1359-6454(96)00325-4.
[44] Y.Z. Peng, C.J. Li, J.J. Yang, J.T. Zhang, J.B. Peng, G.J. Zhou, C.J. Pu, J.H. Yi, Effects of Bismuth on the Microstructure, Properties, and Interfacial Reaction Layers of Sn-9Zn-xBi Solders, Metals. 11 (2021). https://doi.org/10.3390/met11040538.
[45] C. Y. Chou, S. W. Chen, Phase Equilibria of the Sn-Zn-Cu Ternary System, Acta Materialia. 54 (2006) 2393-2400. https://doi.org/10.1016/j.actamat.2006.01.014.
[46] C.S. Lee, F.S. Shieu, Growth of Intermetallic Compounds in the Sn-9Zn/Cu Joint, Journal of Electronic Materials. 35 (2006) 1660-1664. https://doi.org/10.1007/s11664-006-0214-x.
[47] S.W. Yoon, W.K. Choi, H.M. Lee, Interfacial Reaction between Sn-1Bi-5In-9Zn Solder and Cu Substrate, Scripta Materialia. 40 (1999) 327-332. https://doi.org/10.1016/S1359-6462(98)00414-X.
[48] R. Mayappan, R.A. Zaman, Z.Z. Abidin, A.F. Alias, M.N. Derman, Growth of CuZn5 and Cu5Zn8 intermetallic compounds in the Sn-9Zn/Cu joint during liquid state aging, Advanced Materials Research. 173 (2011) 90-95. https://doi.org/10.4028/www.scientific.net/AMR.173.90.
[49] J. Tian, P. Dai, X. Li, Interfacial Reactions between Cu and Zn-20Sn Solder Doped with Minor RE, Journal of Materials Science: Materials in Electronics. 28 (2017) 17185-17192. https://doi.org/10.1007/s10854-017-7647-2.
[50] D. Li, P. Franke, S. Fürtauer, D. Cupid, H. Flandorfer, The Cu-Sn Phase Diagram Part II: New Thermodynamic Assessment, Intermetallics. 34 (2013) 148-158. https://doi.org/10.1016/j.intermet.2012.10.010.
[51] S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, The Cu-Sn Phase Diagram, Part I: New Experimental Results, Intermetallics. 34 (2013) 142-147. https://doi.org/10.1016/j.intermet.2012.10.004.
[52] W. Gierlotka, S.W. Chen, Thermodynamic Descriptions of the Cu-Zn System, Journal of Materials Research. 23 (2008) 258-263. https://doi.org/10.1557/jmr.2008.0035.
[53] S. Leslie Hoyt, On the Copper Rich Kalchoids, Journal of the Institute of Metals. 2 (1904) 235.
[54] A.P. Miodownik, Phase Diagram of Binary Copper Alloys, ASM International. Vol II (1994) 487-496.
[55] B.D. Newbury, M.R. Notis, B. Stephenson, G.S. Cargill, G.B. Stephenson, The Astrolabe Craftsmen of Lahore and Early Brass Metallurgy, Annals of Science. 63 (2006) 201-213. https://doi.org/10.1080/00033790600583162.
[56] Y. C. Huang, S. W. Chen, C. Y. Chou, W. Gierlotka, Liquidus Projection and Thermodynamic Modeling of Sn-Zn-Cu Ternary System, Journal of Alloys and Compounds. 477 (2009) 283-290. https://doi.org/10.1016/j.jallcom.2008.10.156.
[57] K. Weinberg, T. Böhme, Condensation and Growth of Kirkendall Voids in Intermetallic Compounds, IEEE Transactions on Components and Packaging Technologies. 32 (2009) 684-692. https://doi.org/10.1109/TCAPT.2008.2010057.
[58] W. Yang, R.W. Messler, L.E. Felton, Microstructure Evolution of Eutectic Sn-Ag Solder Joints, Journal of Electronic Materials. 23 (1994) 765-772. https://doi.org/10.1007/BF02651371.
[59] D. Kim, J.H. Chang, J. Park, J.J. Pak, Formation and Behavior of Kirkendall Voids within Intermetallic Layers of Solder Joints, Journal of Materials Science: Materials in Electronics. 22 (2011) 703-716. https://doi.org/10.1007/s10854-011-0357-2.
[60] M.M. Cruz, Interfacial Reactions between Sn-3.0Ag-0.5Cu Solder and Cu-coated PCB coatings, (2008).
[61] J.H. Yao, K.R. Elder, H. Guo, M. Grant, Ostwald Ripening in Two and Three Dimensions, Physical Review B. 45 (1992) 8173-8176. https://doi.org/10.1103/PhysRevB.45.8173.
[62] B.L. Chen, G.Y. Li, Influence of Sb on IMC growth in Sn-Ag-Cu-Sb Pb-free Solder joints in Reflow Process, Thin Solid Films. 462-463 (2004) 395-401. https://doi.org/10.1016/j.tsf.2004.05.063.
[63] A.A. El-Daly, A.E. Hammad, Effects of Small Addition of Ag and/or Cu on the Microstructure and Properties of Sn-9Zn Lead-Free Solders, Materials Science and Engineering A. 527 (2010) 5212-5219. https://doi.org/10.1016/j.msea.2010.04.078.
[64] Q. Wang, H. Chen, F. Wang, Effect of Trace Zn Addition on Interfacial Evolution in Sn-10Bi/Cu Solder Joints During Aging Condition, Materials. 12 (2019) 1-15. https://doi.org/10.3390/ma1224240.
[65] C.W. Huang, K.L. Lin, Interfacial Reactions of Lead-Free Sn-Zn based Solders on Cu and Cu plated electroless Ni-P/Au layer Under Aging at 150°C, Journal of Materials Research. 19 (2004) 3560-3568. https://doi.org/10.1557/JMR.2004.0458.
[66] R. Mayappan, R.A. Zaman, Z.Z. Abidin, A.F. Alias, M.N. Derman, Growth of CuZn5 and Cu5Zn8 intermetallic compounds in the Sn-9Zn/Cu joint during liquid state aging, Advanced Materials Research. 173 (2011) 90-95. https://doi.org/10.4028/www.scientific.net/AMR.173.90.
[67] S.P. Yu, M.H. Hon, M.C. Wang, Adhesion Strength of a Lead-Free Solder Hot-Dipped on Copper Substrate, Journal of Electronic Materials. 29 (2000) 237-243. https://doi.org/10.1007/s11664-000-0149-6.
[68] P.D. Desai, Thermodynamic Properties of Selected Binary Aluminum Alloy Systems, Journal of Physical and Chemical Reference Data. 16 (1987) 109-124. https://doi.org/10.1063/1.555788.
[69] M. Date, K.N. Tu, T. Shoji, M. Fujiyoshi, K. Sato, Interfacial Reactions and Impact Reliability of Sn-Zn Solder Joints on Cu or Electroless Au/Ni(P) Bond-Pads, Journal of Materials Research. 19 (2004) 2887-2896. https://doi.org/10.1557/JMR.2004.0371.
[70] D. Sarwono, K.L. Lin, Wetting and IMC Growth Behavior Between Cu Substrate and Zn-25Sn-xCu-yTi High-Temperature Solder Alloys, Journal of Electronic Materials. 48 (2019) 99-106. https://doi.org/10.1007/s11664-018-6742-3.
[71] Y.W. Yen, W. Yu, C.H. Wang, C.M. Chen, Y.C. Li, P.Y. Chen, G. Da Chen, Study of Interfacial Reactions Between Lead-Free Solders and Cu-xZn Alloys, Journal of Electronic Materials. 48 (2019) 170-181. https://doi.org/10.1007/s11664-018-6577-y.
[72] J.M. Song, Y.L. Shen, H.Y. Chuang, Sedimentation of Cu-rich Intermetallics in Liquid Lead-Free Solders, Journal of Materials Research. 22 (2007) 3432-3439. https://doi.org/10.1557/jmr.2007.0431.
[73] Y.W. Yen, C.Y. Lin, G.N. Hermana, P.Y. Chen, Y.P. Wu, Interfacial reactions in the Au/Sn-xZn/Cu Sandwich Couples, Journal of Alloys and Compounds. 710 (2017) 479-490. https://doi.org/10.1016/j.jallcom.2017.03.285.
[74] H. Kim, K. Tu, Kinetic Analysis of the Soldering Reaction between Eutectic SnPb Alloy and Cu Accompanied by Ripening, Physical Review B - Condensed Matter and Materials Physics. 53 (1996) 16027-16034. https://doi.org/10.1103/PhysRevB.53.16027.
[75] P. Fima, J. Pstruś, T. Gancarz, Wetting and Interfacial Chemistry of Sn-Zn-Cu Alloys with Cu and Al Substrates, Journal of Materials Engineering and Performance. 23 (2014) 1530-1535. https://doi.org/10.1007/s11665-014-0867-1.
[76] G. Ren, M.N. Collins, On the Mechanism of Sn Tunnelling Induced Intermetallic Formation between Sn-8Zn-3Bi Solder Alloys and Cu Substrates, Journal of Alloys and Compounds. 791 (2019) 559-566. https://doi.org/10.1016/j.jallcom.2019.03.244.
[77] N.S. Liu, K.L. Lin, Evolution of Interfacial Morphology of Sn-8.5Zn-0.5Ag-0.1Al-xGa/Cu System During Isothermal Aging, Journal of Alloys and Compounds. 456 (2008) 466-473. https://doi.org/10.1016/j.jallcom.2007.02.135.
[78] J.Y. Wang, C.F. Lin, C.M. Chen, Retarding the Cu5Zn8 phase Fracture at the Sn-9 wt.% Zn/Cu Interface, Scripta Materialia. 64 (2011) 633-636. https://doi.org/10.1016/j.scriptamat.2010.12.006.
[79] D.G. Kim, S.B. Jung, Interfacial Reactions and Growth Kinetics for Intermetallic Compound Layer between In-48Sn Solder and Bare Cu Substrate, Journal of Alloys and Compounds. 386 (2005) 151-156. https://doi.org/10.1016/j.jallcom.2004.05.055.
[80] N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Growth Kinetics of Cu6Sn5 Intermetallic Compound at Liquid-Solid Interfaces in Cu/Sn/Cu Interconnects Under Temperature Gradient, Scientific Reports. 5 (2015) 1-12. https://doi.org/10.1038/srep13491.
[81] H.R. Ma, A. Kunwar, S.Y. Shang, C.R. Jiang, Y.P. Wang, H.T. Ma, N. Zhao, Evolution Behavior and Growth Kinetics of Intermetallic Compounds at Sn/Cu Interface during Multiple Reflows, Intermetallics. 96 (2018) 1-12. https://doi.org/10.1016/j.intermet.2018.01.022.
[82] R. Mayappan, Z.A. Ahmad, Effect of Bi Addition on the Activation Energy for the Growth of Cu5Zn8 Intermetallic in the Sn-Zn Lead-Free Solder, Intermetallics. 18 (2010) 730-735. https://doi.org/10.1016/j.intermet.2009.11.016.
[83] J. Hu, A. Hu, M. Li, D. Mao, Depressing Effect of 0.1 wt.% Cr Addition into Sn-9Zn Solder Alloy on the Intermetallic Growth with Cu Substrate during Isothermal Aging, Materials Characterization. 61 (2010) 355-361. https://doi.org/10.1016/j.matchar.2009.12.019.
[84] F. Wang, D. Li, J. Wang, X. Wang, C. Dong, Comparative study on the Wettability and Interfacial Structure in Sn-xZn/Cu and Sn/Cu-xZn system, Journal of Materials Science: Materials in Electronics. 28 (2017) 1631-1643. https://doi.org/10.1007/s10854-016-5705-9.
[85] C.F. Yang, S.W. Chen, K.H. Wu, T.S. Chin, Interfacial Reactions of Sn-8wt.%Zn-3wt.%Bi solder with Cu, Ag, and Ni substrates, Journal of Electronic Materials. 36 (2007) 1524-1530. https://doi.org/10.1007/s11664-007-0255-9.
[86] Y.M. Kim, H.R. Roh, S. Kim, Y.H. Kim, Kinetics of Intermetallic Compound Formation at the Interface between Sn-3.0Ag-0.5Cu Solder and Cu-Zn Alloy Substrates, Journal of Electronic Materials. 39 (2010) 2504-2512. https://doi.org/10.1007/s11664-010-1379-x.
[87] W. Gosdy, W.J. O. Thomas, Electronegativities of the Elements, The Journal of Chemical Physics. 24 (1956) 439-444. https://doi.org/10.1063/1.1742493.

QR CODE