簡易檢索 / 詳目顯示

研究生: 劉文彬
Wun-Bin Liu
論文名稱: 三維橫風中方形管噴流之流場模擬
3-D numerical simulations of square tube jet in cross flow
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 朱佳仁
Chia-Ren Chu
張倉榮
Chang, Tsang-Jung
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 162
中文關鍵詞: 噴流橫風反向對稱旋轉渦漩對下洗作用動量比
外文關鍵詞: jet, cross flow, counter rotating vortex, downwash, and momentum ratio
相關次數: 點閱:191下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用數值模擬方法,探討凸出壁面方形噴流,在橫風條件存在與否環境下的流場結構。在無橫風存在環境下,方形管柱射出之噴流為一個穩態而結構固定的放射狀流場結構。在橫風存在環境下,定義噴流對橫風之動量比為R,將流場分為四種模態:下洗模態、橫風支配、過渡模態與噴流支配模態,本研究設定在橫風雷諾數為1000與2074之不同模態下,分析噴流尾流區與管後尾流區的流場衍化與結構。下洗模態,因為垂直噴流動量不足造成管後尾流區強烈的下洗效應;橫風支配模態,因為垂直噴流動量的提升造成管後尾流區之迴流泡抬升至噴流尾流區;過渡模態,剪應層所造成之上剪應力與管後下洗效應的拉扯,造成流體擺盪不定現象產生;噴流支配模態,由於垂直噴流動量遠大於橫風動量,強烈上剪應力造成流體向上流動現象。在三維流場型態方面,馬蹄形渦漩為橫風經過固體柱物最基本的流場結構,於管後尾流區拖曳之流場狀態,了解管後渦漩為主導關鍵;在噴流尾流區下,橫風與噴流交互作用所引致的反向對稱旋轉渦漩對,伴隨周圍流體捲入,擴散效應之範圍愈至下游處,愈有漸增趨勢顯示。藉由數值上的分析,在各模態之噴流最大水平高度、噴流中心傾斜角度方面,動量比為主要影響因素,並藉由數值資料得到剪應力、阻力係數與渦度之定量分析。


    This study aims to investigate a jet coming from a square tube in a still environment or in a cross wind using an in-house numerical model. The cross sectional flow structure of a square jet in a still environment is similar to a steady radioactive shape. When the jet interacts with a cross wind, the flow structures can be categorized into four modes according to various momentum ratio of jet to cross flow $R$, i.e. downwash, cross wind dominated, transition, and jet dominated modes. This study reveals evolution of wakes behind the jet and the square tube at Re = 1,000 and 2,074. The downwash mode shows that jet momentum is not strong enough, so the jet is downwashed along the tube. In the cross flow dominated mode, a vortex behind the jet is found.
    In the transition mode, the jet begins to swing when traveling downstream.
    This phenomenon disappears in the jet dominated mode. The Counter-rotating Vortex Pair (CVP) is clearly shown in the cross sectional structure of the jet in a cross flow. Ambient fluids are entrained into the jet due to CVP.
    The numerical results also provide variations of jet height, angle of jet, shear stress and vorticity with respect to varying R.

    目錄 中文摘要 英文摘要 致謝 目錄 符號索引 表目錄 圖目錄 1.導論 1.1 研究動機 1.2 文獻回顧 1.3 論文大綱 2.數值模式與數值方法 2.1 控制方程式 2.2初始條件與邊界條件 2.2.1 初始條件 2.2.2 邊界設定 2.3 動量方程式之離散 2.4 SOLA演算法則 2.5 鬆弛係數的設定 2.6 網格之產生與計算點的配置 2.7 數值模式驗證 2.8 小結 3 時間平均化之流場結構 3.1 流場型態介紹 3.2 無橫風下平均流場之拓樸分析 3.3 下洗模態平均流場之拓樸分析 3.3.1 垂直縱剖面 3.3.2 水平橫切面 3.4 橫風支配模態平均流場之拓樸分析 3.4.1 垂直縱剖面 3.4.2 水平橫切面 3.5 過渡模態平均流場之拓樸分析 3.5.1 垂直縱剖面 3.5.2 水平橫切面 3.6 噴流支配模態平均流場之拓樸分析 3.6.1 垂直縱剖面 3.6.2 水平橫切面 3.7 渦度場分析 3.7.1 x-z垂直縱剖面 3.7.2 x-y水平橫切面 3.8 無橫風流場與橫風流場之比較 3.9 在橫風下三維流場結構之分析 3.9.1 馬蹄形渦漩 3.9.2 反向對稱旋轉渦漩 3.10 小結 4 流場結構之數值分析 4.1 軸對稱x-z縱剖面之沿z方向速度分佈 4.1.1 下洗模態 4.1.2 橫風支配模態 4.1.3 過渡模態 4.1.4 噴流支配模態 4.1.5 噴流區域速度分佈之比較 4.2 軸對稱x-z縱剖面之沿x方向速度分佈 4.2.1 下洗模態 4.2.2 橫風支配模態 4.2.3 過渡模態 4.2.4 噴流支配模態 4.2.5 噴流管口垂直噴流動量之比較 4.3 軸對稱縱剖面之摩擦係數分析 4.4 橫風狀態下在各模態之幾何性質與幾何特徵分析 5 結論與建議 5.1 結論 5.2 建議 參考文獻

    [1] Lan, J. and Huang, R.F., 2005, Vorticity evolution mechanism in near field of a transverse jet. In press, The Journal of the Chinese Instituteof Engineers.
    [2] Huang, R.F. and Hsieh, R.H., 2003, Sectional near-wake flow structures of elevated jets in a crossflow. AIAA 41, 1490-1499.
    [3] Hwang, J.Y., and Yang, K.S. 2003 Numerical study of vortical structures around a wall-mounted cubic obstacle in channel flow. Physics of Fluids 16, 2382-2394.
    [4] Sau, A., Sheu, W.H., Hwang, R.R. and Yang, W.C, 2004, Three-dimensional simulation of square jets in cross-flow. Physical Review E 69, 066302-1-066302-20.
    [5] Perry, A.E., Chong, M.S. and Lim, T.T., 1982, The vortex-shedding process behind two-dimensional bluff bodies. Journal of Fluid Mechanics 116, 77-90.
    [6] Kelso, R.M., Lim, T.T. and Perry, A.E., 1996, An round jet normal to a crossflow. Journal of Heat Transfer 94, 111-144.
    [7] Lim, T.T., New, T.H. and Luo, S.C., 2001, On the development of large-scale structure of a jet normal to a cross flow. Physics of Fluids 13, 770-775.
    [8] Narayanan, S., Barooah, P., and Cohen, J.M., 2003, Dynamics and control of an isolated jet in crossflow. AIAA 41, 2316-2330.
    [9] New, T.H., Lim, T.T. and Luo, S.C., 2003, Elliptic jets in cross-flow. Journal of Fluid Mechanics 494, 119-140.
    [10] Canuto, C., Hussaini, M.Y., Quarteroni. A. and Zang, T.A., 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, USA.
    [11] Gerald, C.F., Wheatley P.O., 1999, Applied Numerical Analysis, 6th ed., Addison Wesley Longman, Reading, Massachusetts, USA.
    [12] 李建興 2004,三維氣罩捕集流場與擋版控制之數值模擬. 國立台灣科技大學機械研究所碩士論文, pp.7-22。
    [13] Leonard, B.P., 1979. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering 19, 59-98.
    [14] 陸義仁 2004,振盪流場與並列雙方柱交互作用之研究, 國立台灣科技大學機械研究所碩士論文, pp.7-22。
    [15] Hirt, C.W., Nichols, B.D. and Romero, N.C., 1975, SOLA-A Numerical Solution Algorithm for Transient Fluid Flow, LA-5852 technical report, Los Alamos Scientific Laboratory, USA.
    [16] Huang, R.F. and Hsieh, R.H., 2002, An experimental study of elevated round jets deflected in a crosswind. Experimental Thermal and Fluid Science 27, 77-86.
    [17] Perry, A.E. and Steiner, T.R., 1987, Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation processes. Journal of Fluid Mechanics 174, 233-270.
    [18] Fric, T.F. and Roshko, J.,1994, Vortical structure in the wake of a transverse jet. Journal of Fluid Mechanics 279, 1-47.
    [19] Sykes, R.I., Lewellen, W.S., and Parker, S.F., 1986, On the vorticity of a turbulent jet in a crossflow. Journal of Fluid Mechanics 168, 393-413.
    [20] Fearn, R. and Weston, R.P., 1974, Vorticity associated with a jet in a cross flow. AIAA 12, 1666-1671.

    QR CODE