簡易檢索 / 詳目顯示

研究生: Teshome Assefa Nigatu
Teshome Assefa Nigatu
論文名稱: 使用電解液作為金屬離子源通過原位合金形成法實現無陽極水性混合電池
An Anode Free Aqueous Hybrid Batteries Enabled by in situ Alloy Formation Using Electrolyte as a Source of Metal Ion
指導教授: 黃炳照
Bing-Joe Hwang
楊純誠
Chun-Chen Yang
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-huang Wu
楊純誠
Chun-Chen Yang
張仍奎
Jeng-Kuei Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 119
中文關鍵詞: 儲能系統無陽極水系電池混合電解液合金添加劑
外文關鍵詞: Energy storage system, Anode-free aqueous batteries, Hybrid electrolyte, Alloy, Additive
相關次數: 點閱:193下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自然資源的開發攸關著人類的生存,其用作生產不斷增長的人口所需之材料。但由於會對自然資源產生不可替代的損害,環境破壞和污染成為全球關注的問題。因此,替代能源作為取代化石燃料正成為一大研究重點。生質能、水能、地熱能、太陽能、風能和海洋能等能源是常見且人們正探索中的替代能源。除此之外,儲能系統是伴隨發展替代能源的另一個研究主題。在這方面,無陽極水系電池由於其高能量密度、穩定性和低製造成本而成為一種有前途的儲能材料。儘管如此,到目前為止,無陽極電池所固有的挑戰還沒有得到很好的解決。在本研究中,作為集電器之銅箔內的問題由電解液改質得到解決。在銅集電器表面原位形成合金,用以保護和穩定界面,進而改善鋅的成核。SEM、EDS、FIB和TXM則考慮到Cu和Sn的沉積,用於研究界面處的性質。其他不同的表徵技術,如XRD和XPS用來解釋合金的形成和SnBr2添加劑對電解液系統的影響。由於形成了穩定銅基體的合金,實現了以電解液為唯一鋅源的無陽極水系電池,並證明了它們的良好性能。在混合電解液中加入SnBr2添加劑的無陽極水性Cu||LFP全電池在300圈循環後表現出99.1%的平均庫侖效率,在100圈循環後表現出相對良好的容量保持率(35.2%);無SnBr2添加劑的電池在300圈循環後表現出97.6%的平均庫倫效率,100圈循環後容量保持率僅為7.8%。我們的方法可能會激發更多研究人員,進一步研究製造可用作替代儲能材料的實用無陽極水性混合電池。


Natural resource exploitation is a requirement for human existence. to produce the materials, they needed supporting the growing human populations. But environmental disruption and pollution have become global concern due to irreplaceable damage to natural resources. So, an alternative energy source is becoming a focus of research that can replace the use of fossil fuels. Biomass, hydropower, geothermal, solar, wind, and marine energies are the alternative energy sources set to be explored. In addition to that, energy storage systems are the other topic of investigation that accompanies the findings of alternative energy resources. In this regard, anode-free aqueous batteries, because of their high energy density, stability, and low manufacturing cost are emerging as a promising energy storage material. Nonetheless, the challenges inherent in anode-free batteries are not well tackled so far. In this work, the issue within the Cu foil as a current collector was handled by an electrolyte engineering. Using the in-situ formation of alloy at the surface of Cu current collector that protects and stabilizes the interface improving the nucleation of zinc. SEM, EDS, FIB, and TXM working mechanisms were explained and used to investigate the nucleation and growth at the surface and further deposition nature at the interface. Different characterization techniques such as XRD and XPS were used to explain the alloy formation and the SnBr2 additive effect on the electrolyte system. As a result of the formation of alloy that stabilized Cu substrate, the anode-free aqueous battery, where the electrolyte was the only Zn source, was realized, and their promising performance was demonstrated. The anode-free aqueous Cu|| LFP full cell by using SnBr2 additive into the hybrid electrolyte exhibit 99.1 % average coulombic efficiency after 300 cycles with relatively good capacity retention (35.2%) after 100 cycles as compared with 97.6 % average coulombic efficiency after 300 cycles and 7.8% capacity retention for the electrolyte without. Our method might inspire more researchers for further investigation to manufacture practical anode-free aqueous hybrid batteries that can serve as alternative energy storage materials.

Chinese Summary i Abstract iii Acknowledgment v Dedication vii List of Tables xvii List of Equations xviii List of Abbreviations xix Chapter 1: Introduction 1 1.1 Background of the Study 1 1.2 Zinc Based Aqueous Rechargeable Batteries 3 1.3 Basic Components of Anode Free Batteries 5 1.3.1 Current Collectors 6 1.3.2 Aqueous Electrolytes 7 1.3.3 Separators 9 1.3.4 Cathode 10 Chapter 2: Literature Review 14 2.1 Aqueous Hybrid Batteries 14 2.2 Advantage, Challenges and Strategies of Aqueous Anode Free Batteries 18 2.3 Progress of Aqueous Anode Free Batteries 26 2.4 Motivation of the Study 36 2.5 Objective and Novelty of the Study 36 Chapter 3: Experimental Methods 38 3.1 Materials 38 3.2 Preparation of Cathode Material 39 3.3 Preparation of Current Collectors and Separator 41 3.4 Preparation of Electrolytes 41 3.5 Mechanism of Aqueous Anode-Free Hybrid Batteries 41 3.6 Characterization Techniques Used 45 3.6.1 SEM and FIB 45 3.6.2 In-Operando TXM Technique 49 3.6.3 XRD and XPS Analysis Methods 50 3.7 Electrochemical Test 52 Chapter 4: Result and Discussion 53 4.1 Pre-analysis of ex-situ and in-situ Techniques and Optimization 53 4.2 Surface Analysis 62 4.3 In-Operando TXM Analysis 69 4.4 Characterization of Interface Composition 71 4.5 Half-cell Electrochemical Performance Investigation 74 4.6 Investigation of Electrochemical Performance of Aqueous Anode-Free Hybrid Electrolytes Cell 78 4.7 Summary 82 Chapter 5: General Summary and Recommendations 85 5.1 General Summary 85 5.2 Recommendations and Future outlook 86 References 88 List of publication 110

[1] B. Gutti, M.M. Aji, G. Magaji, Environmental impact of natural resources exploitation in Nigeria and the way forward, Journal of Applied Technology in Environmental Sanitation, 2 (2012) 95-102.
[2] A.D. Basiago, Economic, social, and environmental sustainability in development theory and urban planning practice, Environmentalist, 19 (1998) 145-161.
[3] E.B. Barbier, The role of natural resources in economic development, October2002.
[4] W. Xiaoman, A. Majeed, D.G. Vasbieva, C.E.W. Yameogo, N. Hussain, Natural resources abundance, economic globalization, and carbon emissions: Advancing sustainable development agenda, Sustainable development, 29 (2021) 1037-1048.
[5] N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies, Futures, 69 (2015) 31-49.
[6] M. Petrović-Ranđelović, N. Kocić, B. Stojanović-Ranđelović, The importance of renewable energy sources for sustainable development, Economics of Sustainable Development, 4 (2020) 15-24.
[7] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strategy Reviews, 24 (2019) 38-50.
[8] O. Edenhofer, Climate change 2014: mitigation of climate change, Cambridge University Press2015.
[9] X. Wu, C. Li, L. Shao, J. Meng, L. Zhang, G. Chen, Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view, Renewable and Sustainable Energy Reviews, 138 (2021) 110655.
[10] W. Kuang, Are clean energy assets a safe haven for international equity markets?, Journal of Cleaner Production, 302 (2021) 127006.
[11] U. Shahzad, The need for renewable energy sources, energy, 2 (2012) 16-18.
[12] N. Alrikabi, Renewable energy types, Journal of Clean Energy Technologies, 2 (2014) 61-64.
[13] J. Liu, X. Chen, H. Yang, K. Shan, Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage, Applied Energy, 290 (2021) 116733.
[14] A. Demirbaş, Global renewable energy resources, Energy sources, 28 (2006) 779-792.
[15] T.-Z. Ang, M. Salem, M. Kamarol, H.S. Das, M.A. Nazari, N. Prabaharan, A comprehensive study of renewable energy sources: classifications, challenges and suggestions, Energy Strategy Reviews, 43 (2022) 100939.
[16] T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, Energy & Environmental Science, 11 (2018) 2696-2767.
[17] X. Ji, A paradigm of storage batteries, Energy & Environmental Science, 12 (2019) 3203-3224.
[18] Y. Tian, Y. An, C. Wei, H. Jiang, S. Xiong, J. Feng, Y. Qian, Recently advances and perspectives of anode-free rechargeable batteries, Nano Energy, 78 (2020) 105344.
[19] T.M. Hagos, T.T. Hagos, H.K. Bezabh, G.B. Berhe, L.H. Abrha, S.-F. Chiu, C.-J. Huang, W.-N. Su, H. Dai, B.J. Hwang, Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery, ACS Applied Energy Materials, 3 (2020) 10722-10733.
[20] X. Zheng, T. Ahmad, W. Chen, Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries, Energy Storage Materials, 39 (2021) 365-394.
[21] A. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R. White, J. Lee, T. Rodgers, Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis, Nature Energy, 5 (2020) 693-702.
[22] F. Wan, X. Zhou, Y. Lu, Z. Niu, J. Chen, Energy storage chemistry in aqueous zinc metal batteries, ACS Energy Letters, 5 (2020) 3569-3590.
[23] B.W. Olbasa, C.J. Huang, F.W. Fenta, S.K. Jiang, S.A. Chala, H.C. Tao, Y. Nikodimos, C.C. Wang, H.S. Sheu, Y.W. Yang, Highly Reversible Zn Metal Anode Stabilized by Dense and Anion‐Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte, Advanced Functional Materials, (2021) 2103959.
[24] Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei, O.F. Mohammed, Y. Cui, H.N. Alshareef, Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries, Energy & Environmental Science, 14 (2021) 4463-4473.
[25] Y. Dong, L. Miao, G. Ma, S. Di, Y. Wang, L. Wang, J. Xu, N. Zhang, Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries, Chemical science, 12 (2021) 5843-5852.
[26] K. Zhu, T. Wu, K. Huang, A high-voltage activated high-erformance cathode for aqueous Zn-ion batteries, Energy Storage Materials, 38 (2021) 473-481.
[27] N. Patil, C. de la Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma, R. Marcilla, An Ultrahigh Performance Zinc‐Organic Battery using Poly (catechol) Cathode in Zn (TFSI) 2‐Based Concentrated Aqueous Electrolytes, Advanced Energy Materials, 11 (2021) 2100939.
[28] B.A. Jote, T.T. Beyene, N.A. Sahalie, M.A. Weret, B.W. Olbassa, Z.T. Wondimkun, G.B. Berhe, C.-J. Huang, W.-N. Su, B.J. Hwang, Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery, Journal of Power Sources, 461 (2020) 228102.
[29] S. Kumar, H. Yoon, H. Park, G. Park, S. Suh, H.-J. Kim, A dendrite-free anode for stable aqueous rechargeable zinc-ion batteries, Journal of Industrial and Engineering Chemistry, (2022) 321-327.
[30] V. Verma, S. Kumar, W. Manalastas Jr, R. Satish, M. Srinivasan, Progress in rechargeable aqueous zinc‐and aluminum‐ion battery electrodes: challenges and outlook, Advanced Sustainable Systems, 3 (2019) 1800111.
[31] M. Wu, G. Zhang, H. Yang, X. Liu, M. Dubois, M.A. Gauthier, S. Sun, Aqueous Zn‐based rechargeable batteries: recent progress and future perspectives, InfoMat, 4 (2022) e12265.
[32] D. Lin, Y. Li, Recent Advances of Aqueous Rechargeable Zinc‐Iodine Batteries: Challenges, Solutions, and Prospects, Advanced Materials, (2022) 2108856.
[33] Y. Shi, Y. Chen, L. Shi, K. Wang, B. Wang, L. Li, Y. Ma, Y. Li, Z. Sun, W. Ali, An overview and future perspectives of rechargeable zinc batteries, Small, 16 (2020) 2000730.
[34] W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang, C. Yang, Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries, Electrochemical Energy Reviews, 4 (2021) 601-631.
[35] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.G. Zhang, Anode‐free rechargeable lithium metal batteries, Advanced Functional Materials, 26 (2016) 7094-7102.
[36] J. Zheng, Z. Huang, F. Ming, Y. Zeng, B. Wei, Q. Jiang, Z. Qi, Z. Wang, H. Liang, Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn‐Ion Batteries, Small, (2022) 2200006.
[37] J. Lu, J. Yang, Z. Zhang, C. Wang, J. Xu, T. Wang, Silk Fibroin Coating Enables Dendrite‐free Zinc Anode for Long‐Life Aqueous Zinc‐Ion Batteries, ChemSusChem, 15 (2022) e202200656.
[38] C. Li, L. Wang, J. Zhang, D. Zhang, J. Du, Y. Yao, G. Hong, Roadmap on the protective strategies of zinc anodes in aqueous electrolyte, Energy Storage Materials, 44 (2022) 104-135.
[39] R.V. Salvatierra, W. Chen, J.M. Tour, What Can be Expected from “Anode‐Free” Lithium Metal Batteries?, Advanced Energy and Sustainability Research, 2 (2021) 2000110.
[40] W. Fu, K. Turcheniuk, O. Naumov, R. Mysyk, F. Wang, M. Liu, D. Kim, X. Ren, A. Magasinski, M. Yu, Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries, Materials Today, 48 (2021) 176-197.
[41] S. Menkin, C.A. O’Keefe, A.B. Gunnarsdóttir, S. Dey, F.M. Pesci, Z. Shen, A. Aguadero, C.P. Grey, Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries, The Journal of Physical Chemistry C, 125 (2021) 16719-16732.
[42] X. Yue, A.C. Johnson, S. Kim, R.R. Kohlmeyer, A. Patra, J. Grzyb, A. Padmanabha, M. Wang, Z. Jiang, P. Sun, A Nearly Packaging‐Free Design Paradigm for Light, Powerful, and Energy‐Dense Primary Microbatteries, Advanced Materials, 33 (2021) 2101760.
[43] H.H. Weldeyohannes, L.H. Abrha, Y. Nikodimos, K.N. Shitaw, T.M. Hagos, C.-J. Huang, C.-H. Wang, S.-H. Wu, W.-N. Su, B.J. Hwang, Guiding lithium-ion flux to avoid cell's short circuit and extend cycle life for an anode-free lithium metal battery, Journal of Power Sources, 506 (2021) 230204.
[44] Z. Lu, H. Yang, Q.H. Yang, P. He, H. Zhou, Building a Beyond Concentrated Electrolyte for High‐Voltage Anode‐Free Rechargeable Sodium Batteries, Angewandte Chemie, 134 (2022) e202200410.
[45] M.J. Wang, E. Carmona, A. Gupta, P. Albertus, J. Sakamoto, Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating, Nature communications, 11 (2020) 1-9.
[46] T.M. Hagos, H.K. Bezabh, C.-J. Huang, S.-K. Jiang, W.-N. Su, B.J. Hwang, A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques, Accounts of Chemical Research, 54 (2021) 4474-4485.
[47] B. Zhou, A. Bonakdarpour, I. Stoševski, B. Fang, D.P. Wilkinson, Modification of Cu Current Collectors for Lithium Metal Batteries–A Review, Progress in Materials Science, (2022) 100996.
[48] H. Jeong, J. Jang, C. Jo, A Review on Current Collector Coating Methods for Next-generation Batteries, Chemical Engineering Journal, (2022) 136860.
[49] U. Mittal, D. Kundu, Electrochemical Stability of Prospective Current Collectors in the Sulfate Electrolyte for Aqueous Zn-Ion Battery Application, Journal of The Electrochemical Society, 168 (2021) 090560.
[50] R.-S. Kühnel, D. Reber, A. Remhof, R. Figi, D. Bleiner, C. Battaglia, “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries, Chemical Communications, 52 (2016) 10435-10438.
[51] C. Lamiel, I. Hussain, X. Ma, K. Zhang, Properties, functions, and challenges: current collectors, Materials Today Chemistry, 26 (2022) 101152.
[52] S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc‐ion batteries, Chemistry–A European Journal, 25 (2019) 14480-14494.
[53] Y. Du, Y. Li, B.B. Xu, T.X. Liu, X. Liu, F. Ma, X. Gu, C. Lai, Electrolyte salts and additives regulation enables high performance aqueous zinc ion batteries: a mini review, Small, (2021) 2104640.
[54] M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, New concepts in electrolytes, Chemical reviews, 120 (2020) 6783-6819.
[55] S. Jin, D. Zhang, A. Sharma, Q. Zhao, Y. Shao, P. Chen, J. Zheng, J. Yin, Y. Deng, P. Biswal, Stabilizing zinc electrodeposition in a battery anode by controlling crystal growth, Small, 17 (2021) 2101798.
[56] S. Kim, J. Lee, S. Kim, S. Kim, J. Yoon, Electrochemical lithium recovery with a LiMn2O4–Zinc Battery System using zinc as a negative electrode, Energy Technology, 6 (2018) 340-344.
[57] G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2 (PO4) 3, Nano Energy, 25 (2016) 211-217.
[58] M.S. Chae, J.W. Heo, H.H. Kwak, H. Lee, S.-T. Hong, Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material, Journal of Power Sources, 337 (2017) 204-211.
[59] N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn (CF3SO3) 2 electrolyte for rechargeable aqueous Zn-ion battery, Journal of the American Chemical Society, 138 (2016) 12894-12901.
[60] C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc‐ion batteries, Energy & Environmental Materials, 3 (2020) 146-159.
[61] H. Yan, X. Zhang, Z. Yang, M. Xia, C. Xu, Y. Liu, H. Yu, L. Zhang, J. Shu, Insight into the electrolyte strategies for aqueous zinc ion batteries, Coordination Chemistry Reviews, 452 (2022) 214297.
[62] Y. Pan, S. Chou, H.K. Liu, S.X. Dou, Functional membrane separators for next-generation high-energy rechargeable batteries, National Science Review, 4 (2017) 917-933.
[63] P. Cao, H. Zhou, X. Zhou, Q. Du, J. Tang, J. Yang, Stabilizing Zinc Anodes by a Cotton Towel Separator for Aqueous Zinc-Ion Batteries, ACS Sustainable Chemistry & Engineering, 10 (2022) 8350-8359.
[64] R. Xu, X. Huang, X. Lin, J. Cao, J. Yang, C. Lei, The functional aqueous slurry coated separator using polyvinylidene fluoride powder particles for lithium-ion batteries, Journal of Electroanalytical Chemistry, 786 (2017) 77-85.
[65] J. Fu, H. Wang, P. Xiao, C. Zeng, Q. Sun, H. Li, A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose, Energy Storage Materials, 48 (2022) 191.
[66] Y. Qin, P. Liu, Q. Zhang, Q. Wang, D. Sun, Y. Tang, Y. Ren, H. Wang, Advanced Filter Membrane Separator for Aqueous Zinc‐Ion Batteries, Small, 16 (2020) 2003106.
[67] B.-S. Lee, S. Cui, X. Xing, H. Liu, X. Yue, V. Petrova, H.-D. Lim, R. Chen, P. Liu, Dendrite suppression membranes for rechargeable zinc batteries, ACS applied materials & interfaces, 10 (2018) 38928-38935.
[68] Y. Mekonnen, A. Sundararajan, A.I. Sarwat, A review of cathode and anode materials for lithium-ion batteries, SoutheastCon 2016, (2016) 1-6.
[69] S. Mahmud, M. Rahman, M. Kamruzzaman, M.O. Ali, M.S.A. Emon, H. Khatun, M.R. Ali, Recent advances in lithium-ion battery materials for improved electrochemical performance: A review, Results in Engineering, (2022) 100472.
[70] J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei, Y. Huang, Building safe lithium-ion batteries for electric vehicles: a review, Electrochemical Energy Reviews, 3 (2020) 1-42.
[71] Z. Yu, L. Cao, H. Liu, D.-W. Wang, High voltage aqueous Zn/LiCoO2 hybrid battery under mildly alkaline conditions, Energy Storage Materials, 43 (2021) 158-164.
[72] T. Zhang, D. Li, Z. Tao, J. Chen, Understanding electrode materials of rechargeable lithium batteries via DFT calculations, Progress in Natural Science: Materials International, 23 (2013) 256-272.
[73] W. Yu, Y. Liu, L. Liu, X. Yang, Y. Han, P. Tan, Rechargeable aqueous Zn-LiMn2O4 hybrid batteries with high performance and safety for energy storage, Journal of Energy Storage, 45 (2022) 103744.
[74] M.-J. Lee, S. Lee, P. Oh, Y. Kim, J. Cho, High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries, Nano letters, 14 (2014) 993-999.
[75] H. Eikhuemelo, Composition Control of Spinel Lithium Manganese Oxide for High Voltage, High Energy Lithium Ion Batteries, (2014).
[76] J. Hu, W. Huang, L. Yang, F. Pan, Structure and performance of the LiFePO 4 cathode material: from the bulk to the surface, Nanoscale, 12 (2020) 15036-15044.
[77] C. Daniel, D. Mohanty, J. Li, D.L. Wood, Cathode materials review, AIP Conference Proceedings, American Institute of Physics, 2014, pp. 26-43.
[78] J. Hu, W. Huang, L. Yang, F. Pan, Structure and performance of the LiFePO4 cathode material: from the bulk to the surface, Nanoscale, 12 (2020) 15036-15044.
[79] Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen, P.M. Ajayan, Strategies for dendrite‐free anode in aqueous rechargeable zinc ion batteries, Advanced Energy Materials, 10 (2020) 2001599.
[80] V. Verma, S. Kumar, W. Manalastas Jr, M. Srinivasan, Undesired reactions in aqueous rechargeable zinc ion batteries, ACS Energy Letters, 6 (2021) 1773-1785.
[81] Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries, Chemical Reviews, 121 (2021) 6654-6695.
[82] Y. Arafat, M.R. Azhar, Y. Zhong, H.R. Abid, M.O. Tadé, Z. Shao, Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc–air batteries, Advanced Energy Materials, 11 (2021) 2100514.
[83] Y. Yu, J. Xie, H. Zhang, R. Qin, X. Liu, X. Lu, High‐Voltage Rechargeable Aqueous Zinc‐Based Batteries: Latest Progress and Future Perspectives, Small Science, 1 (2021) 2000066.
[84] X. Yuan, F. Ma, L. Zuo, J. Wang, N. Yu, Y. Chen, Y. Zhu, Q. Huang, R. Holze, Y. Wu, Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries, Electrochemical Energy Reviews, 4 (2021) 1-34.
[85] X. Yuan, X. Wu, X.X. Zeng, F. Wang, J. Wang, Y. Zhu, L. Fu, Y. Wu, X. Duan, A fully aqueous hybrid electrolyte rechargeable battery with high voltage and high energy density, Advanced Energy Materials, 10 (2020) 2001583.
[86] Q. Yang, X. Li, Z. Chen, Z. Huang, C. Zhi, Cathode Engineering for High Energy Density Aqueous Zn Batteries, Accounts of Materials Research, 3 (2021) 78-88.
[87] H. Gao, K. Tang, J. Xiao, X. Guo, W. Chen, H. Liu, G. Wang, Recent advances in “water in salt” electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries, Journal of Energy Chemistry, (2021) 84-99.
[88] M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D.P. Fenning, S.F. Lux, O. Paschos, C. Bauer, Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights, The journal of physical chemistry letters, 6 (2015) 4653-4672.
[89] M. Chen, J. Zhang, X. Ji, J. Fu, G. Feng, Progress on predicting the electrochemical stability window of electrolytes, Current Opinion in Electrochemistry, (2022) 101030.
[90] P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception, Energy & Environmental Science, 11 (2018) 2306-2309.
[91] A.S. Moraes, G.A. Pinheiro, T.C. Lourenço, M.C. Lopes, M.G. Quiles, L.G. Dias, J.L. Da Silva, Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining, Journal of Chemical Information and Modeling, (2022).
[92] C. Wessells, R. Ruffο, R.A. Huggins, Y. Cui, Investigations of the electrochemical stability of aqueous electrolytes for lithium battery applications, Electrochemical and Solid-State Letters, 13 (2010) A59.
[93] T. Lv, L. Suo, Water-in-salt widens the electrochemical stability window: Thermodynamic and kinetic factors, Current Opinion in Electrochemistry, 29 (2021) 100818.
[94] M. Maffre, R. Bouchal, S.A. Freunberger, N. Lindahl, P. Johansson, F. Favier, O. Fontaine, D. Bélanger, Investigation of electrochemical and chemical processes occurring at positive potentials in “water-in-salt” electrolytes, Journal of The Electrochemical Society, 168 (2021) 050550.
[95] T.S. Groves, C.S. Perez-Martinez, R. Lhermerout, S. Perkin, Surface forces and structure in a water-in-salt electrolyte, The Journal of Physical Chemistry Letters, 12 (2021) 1702-1707.
[96] T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, The Applications of Water‐in‐Salt Electrolytes in Electrochemical Energy Storage Devices, Advanced Functional Materials, 31 (2021) 2006749.
[97] J. Yan, J. Wang, H. Liu, Z. Bakenov, D. Gosselink, P. Chen, Rechargeable hybrid aqueous batteries, Journal of Power Sources, 216 (2012) 222-226.
[98] P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. Mai, Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life, ACS applied materials & interfaces, 9 (2017) 42717-42722.
[99] F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J.A. Dura, K. Xu, C. Wang, Highly reversible zinc metal anode for aqueous batteries, Nature materials, 17 (2018) 543-549.
[100] H. Zhang, X. Liu, B. Qin, S. Passerini, Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery, Journal of Power Sources, 449 (2020) 227594.
[101] B.W. Olbasa, C.J. Huang, F.W. Fenta, S.K. Jiang, S.A. Chala, H.C. Tao, Y. Nikodimos, C.C. Wang, H.S. Sheu, Y.W. Yang, Highly Reversible Zn Metal Anode Stabilized by Dense and Anion‐Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte, Advanced Functional Materials, 32 (2022) 2103959.
[102] A. Clarisza, H.K. Bezabh, S.-K. Jiang, C.-J. Huang, B.W. Olbasa, S.-H. Wu, W.-N. Su, B.J. Hwang, Highly Concentrated Salt Electrolyte for a Highly Stable Aqueous Dual-Ion Zinc Battery, ACS Applied Materials & Interfaces, 14 (2022) 36644-36655.
[103] P. Li, H. Kim, J. Ming, H.-G. Jung, I. Belharouak, Y.-K. Sun, Quasi-compensatory effect in emerging anode-free lithium batteries, eScience, (2021).
[104] W.Z. Huang, C.Z. Zhao, P. Wu, H. Yuan, W.E. Feng, Z.Y. Liu, Y. Lu, S. Sun, Z.H. Fu, J.K. Hu, Anode‐Free Solid‐State Lithium Batteries: A Review, Advanced Energy Materials, (2022) 2201044.
[105] C. Heubner, S. Maletti, H. Auer, J. Hüttl, K. Voigt, O. Lohrberg, K. Nikolowski, M. Partsch, A. Michaelis, From Lithium‐Metal toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and Challenges, Advanced Functional Materials, 31 (2021) 2106608.
[106] H. Li, D. Chao, B. Chen, X. Chen, C. Chuah, Y. Tang, Y. Jiao, M. Jaroniec, S.-Z. Qiao, Revealing principles for design of lean-electrolyte lithium metal anode via in situ spectroscopy, Journal of the American Chemical Society, 142 (2020) 2012-2022.
[107] A. Shao, X. Tang, M. Zhang, M. Bai, Y. Ma, Challenges, Strategies, and Prospects of the Anode‐Free Lithium Metal Batteries, Advanced Energy and Sustainability Research, 3 (2022) 2100197.
[108] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun, B. Jia, S. Zhang, T. Ma, Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives, Nano-micro letters, 14 (2022) 1-47.
[109] K.P. Birke, D.N. Schweitzer, Fundamental Aspects of Achievable Energy Densities in Electrochemical Cells, Modern Battery Engineering: A Comprehensive Introduction, World Scientific2019, pp. 1-30.
[110] Y. Son, H. Cha, C. Jo, A.S. Groombridge, T. Lee, A. Boies, J. Cho, M. De Volder, Reliable protocols for calculating the specific energy and energy density of Li-Ion batteries, Materials Today Energy, 21 (2021) 100838.
[111] M.B. Dixit, A. Parejiya, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Understanding implications of cathode architecture on energy density of solid-state batteries, Energy Storage Materials, 40 (2021) 239-249.
[112] M.N. Ikhsanudin, A.R. Al Ichwan, D.D. Kuncoro, A.S.G. Muthi, A. Jamaluddin, A. Purwanto, Cu-foil modification for anode-free lithium-ion battery from electronic cable waste, Open Engineering, 12 (2022) 394-400.
[113] S. Pal, X. Zhang, B. Babu, X. Lin, J. Wang, A. Vlad, Materials, Electrodes, and Electrolytes Advances for Next Generation Lithium-based Anode-Free Batteries, Oxford Open Materials Science, 2 (2022) 1-23.
[114] H. Zhang, G. Guo, H. Adenusi, B. Qin, H. Li, S. Passerini, W. Huang, Advances and issues in developing intercalation graphite cathodes for aqueous batteries, Materials Today, (2022) 162-172.
[115] J. Liu, C. Xu, Z. Chen, S. Ni, Z.X. Shen, Progress in aqueous rechargeable batteries, Green Energy & Environment, 3 (2018) 20-41.
[116] C.-H. Lin, K. Sun, M. Ge, L.M. Housel, A.H. McCarthy, M.N. Vila, C. Zhao, X. Xiao, W.-K. Lee, K.J. Takeuchi, Systems-level investigation of aqueous batteries for understanding the benefit of water-in-salt electrolyte by synchrotron nanoimaging, Science advances, 6 (2020) eaay7129.
[117] L. Hu, P. Xiao, L. Xue, H. Li, T. Zhai, The rising zinc anodes for high-energy aqueous batteries, EnergyChem, 3 (2021) 100052.
[118] J. Zhao, X. Yang, S. Li, N. Chen, C. Wang, Y. Zeng, F. Du, Hybrid and Aqueous Li+–Ni Metal Batteries, CCS Chemistry, 3 (2021) 2498-2508.
[119] W. Xinyi, L. Weijie, H. Chao, L. Huakun, D. Shixue, Challenges and optimization strategies of the anode of aqueous zinc-ion battery, Energy Storage Science and Technology, 11 (2022) 1211.
[120] F. Mo, N. He, L. Chen, M. Li, S. Yu, J. Zhang, W. Wang, J. Wei, Strategies for Stabilization of Zn Anodes for Aqueous Zn-Based Batteries: A Mini Review, Frontiers in Chemistry, (2021) 1263.
[121] X. Li, X. Wang, L. Ma, W. Huang, Solvation Structures in Aqueous Metal‐Ion Batteries, Advanced Energy Materials, (2022) 2202068.
[122] Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent Advances in Electrolytes for “Beyond Aqueous” Zinc‐Ion Batteries, Advanced Materials, 34 (2022) 2106409.
[123] Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B. Dong, C. Zhi, Dendrites in Zn‐based batteries, Advanced Materials, 32 (2020) 2001854.
[124] H. Liu, Y. Zhang, C. Wang, J.N. Glazer, Z. Shan, N. Liu, Understanding and controlling the nucleation and growth of Zn electrodeposits for aqueous zinc-ion batteries, ACS Applied Materials & Interfaces, 13 (2021) 32930-32936.
[125] Z. Yang, C. Lv, W. Li, T. Wu, Q. Zhang, Y. Tang, M. Shao, H. Wang, Revealing the Two‐Dimensional Surface Diffusion Mechanism for Zinc Dendrite Formation on Zinc Anode, Small, (2021) 2104148.
[126] Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu, Y. Xiao, P. Zhang, Zinc dendrite growth and inhibition strategies, Materials Today Energy, 20 (2021) 100692.
[127] X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai, T.S. Miller, F. Lai, P. Shearing, D.J. Brett, D. Han, Alleviation of dendrite formation on zinc anodes via electrolyte additives, ACS Energy Letters, 6 (2021) 395-403.
[128] B.-F. Cui, X.-P. Han, W.-B. Hu, Micronanostructured design of dendrite‐free zinc anodes and their applications in aqueous zinc‐based rechargeable batteries, Small Structures, 2 (2021) 2000128.
[129] V.P. Hoang Huy, L.T. Hieu, J. Hur, Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies, Nanomaterials, 11 (2021) 2746.
[130] P. Wang, S. Liang, C. Chen, X. Xie, J. Chen, Z. Liu, Y. Tang, B. Lu, J. Zhou, Spontaneous Construction of Nucleophilic Carbonyl‐Containing Interphase toward Ultrastable Zinc‐Metal Anodes, Advanced Materials, 34 (2022) 2202733.
[131] J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin, Y. Huang, Strategies of regulating Zn 2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries, Energy & Environmental Science, 15 (2022) 499-528.
[132] N. Dong, F. Zhang, H. Pan, Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries, Chemical Science, 13 (2022) 8243-8252.
[133] Y. Liu, L. Li, X. Ji, S. Cheng, Scientific Challenges and Improvement Strategies of Zn‐Based Anodes for Aqueous Zn‐Ion Batteries, The Chemical Record, (2022) e202200114.
[134] J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Designing dendrite‐free zinc anodes for advanced aqueous zinc batteries, Advanced Functional Materials, 30 (2020) 2001263.
[135] L. Ma, C. Zhi, Zn electrode/electrolyte interfaces of Zn batteries: A mini review, Electrochemistry Communications, 122 (2021) 106898.
[136] J. Hao, X. Li, X. Zeng, D. Li, J. Mao, Z. Guo, Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries, Energy & Environmental Science, 13 (2020) 3917-3949.
[137] S. Mallick, C.R. Raj, Aqueous Rechargeable Zn‐ion Batteries: Strategies for Improving the Energy Storage Performance, ChemSusChem, 14 (2021) 1987-2022.
[138] C. Han, W. Li, H.K. Liu, S. Dou, J. Wang, Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries, Nano Energy, 74 (2020) 104880.
[139] H. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng, Y.-F. Zhu, Z. Wen, W. Zhang, X.-Y. Lang, W.-T. Zheng, Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery, Nano-micro letters, 14 (2022) 1-14.
[140] N. Borchers, S. Clark, B. Horstmann, K. Jayasayee, M. Juel, P. Stevens, Innovative zinc-based batteries, Journal of Power Sources, 484 (2021) 229309.
[141] J. Zheng, Z. Huang, F. Ming, Y. Zeng, B. Wei, Q. Jiang, Z. Qi, Z. Wang, H. Liang, Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn‐Ion Batteries, Small, 18 (2022) 2200006.
[142] W. Ni, X. Li, L.-Y. Shi, J. Ma, Research progress on ZnSe and ZnTe anodes for rechargeable batteries, Nanoscale, 14 (2022) 9609-9635.
[143] N. Dong, F. Zhang, H. Pan, Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries, Chemical science, 13 (2022) 8243-8252.
[144] Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn–MnO2 battery, Nano Letters, 21 (2021) 1446-1453.
[145] Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu, S. Xiong, J. Feng, Y. Qian, Stable Aqueous Anode‐Free Zinc Batteries Enabled by Interfacial Engineering, Advanced Functional Materials, 31 (2021) 2101886.
[146] Z. Miao, H. Yu, M. Xia, R. Zheng, Z. Yang, Y. Liu, L. Zhang, J. Shu, An anode-free aqueous dual-ion battery, Sustainable Energy & Fuels, 5 (2021) 3298-3302.
[147] F. Ming, Y. Zhu, G. Huang, A.-H. Emwas, H. Liang, Y. Cui, H.N. Alshareef, Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries, Journal of the American Chemical Society, 144 (2022) 7160-7170.
[148] T.A. Nigatu, H.K. Bezabh, B.W. Taklu, B.W. Olbasa, Y.-T. Weng, S.-H. Wu, W.-N. Su, C.-C. Yang, B.J. Hwang, Synergetic effect of water-in-bisalt electrolyte and hydrogen-bond rich additive improving the performance of aqueous batteries, Journal of Power Sources, 511 (2021) 230413.
[149] A. Mohammed, A. Abdullah, Scanning electron microscopy (SEM): A review, Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 2018, pp. 7-9.
[150] K. Akhtar, S.A. Khan, S.B. Khan, A.M. Asiri, Scanning electron microscopy: Principle and applications in nanomaterials characterization, Handbook of materials characterization, Springer2018, pp. 113-145.
[151] P. Li, S. Chen, H. Dai, Z. Yang, Z. Chen, Y. Wang, Y. Chen, W. Peng, W. Shan, H. Duan, Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications, Nanoscale, 13 (2021) 1529-1565.
[152] P.R. Munroe, The application of focused ion beam microscopy in the material sciences, Materials characterization, 60 (2009) 2-13.
[153] Z. Zhang, W. Wang, Z. Dong, X. Yang, F. Liang, X. Chen, C. Wang, C. Luo, J. Zhang, X. Wu, The Trends of In Situ Focused Ion Beam Technology: Toward Preparing Transmission Electron Microscopy Lamella and Devices at the Atomic Scale, Advanced Electronic Materials, (2022) 2101401.
[154] J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W. Ritchie, J.H.J. Scott, D.C. Joy, J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W. Ritchie, Focused Ion Beam Applications in the SEM Laboratory, Scanning Electron Microscopy and X-Ray Microanalysis, (2018) 517-528.
[155] C. Cao, M.F. Toney, T.-K. Sham, R. Harder, P.R. Shearing, X. Xiao, J. Wang, Emerging X-ray imaging technologies for energy materials, Materials Today, 34 (2020) 132-147.
[156] T. Li, X. Zhou, Y. Cui, C. Lim, H. Kang, B. Yan, J. Wang, J. Wang, Y. Fu, L. Zhu, Characterization of dynamic morphological changes of tin anode electrode during (de) lithiation processes using in operando synchrotron transmission X-ray microscopy, Electrochimica Acta, 314 (2019) 212-218.
[157] S.-M. Bak, Z. Shadike, R. Lin, X. Yu, X.-Q. Yang, In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research, NPG Asia Materials, 10 (2018) 563-580.
[158] A.A. Bunaciu, E.G. UdriŞTioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications, Critical reviews in analytical chemistry, 45 (2015) 289-299.
[159] D.J. Morgan, X-ray photoelectron spectroscopy (xps): an introduction, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, (2014).
[160] G. Mu, S. Agrawal, P. Sittisomwong, P. Bai, Impacts of negative to positive capacities ratios on the performance of next-generation lithium-ion batteries, Electrochimica Acta, 406 (2022) 139878.
[161] J.-H. Cheng, A.A. Assegie, C.-J. Huang, M.-H. Lin, A.M. Tripathi, C.-C. Wang, M.-T. Tang, Y.-F. Song, W.-N. Su, B.J. Hwang, Visualization of lithium plating and stripping via in operando transmission X-ray microscopy, The Journal of Physical Chemistry C, 121 (2017) 7761-7766.
[162] L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang, L. Gao, X. Pu, Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries, Advanced Functional Materials, (2022) 2108533.
[163] L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang, L. Gao, X. Pu, Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries, Advanced Functional Materials, 32 (2022) 2108533.
[164] Z. Hou, Y. Gao, H. Tan, B. Zhang, Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation, Nature communications, 12 (2021) 1-10.
[165] G. Vourlias, Application of X-rays diffraction for identifying thin oxide surface layers on zinc coatings, Coatings, 10 (2020) 1005.
[166] N. Chaba, S. Neramittagapong, A. Neramittagapong, N. Eua-Anant, Morphology study of zinc anode prepared by electroplating method for rechargeable Zn-MnO2 battery, Heliyon, 5 (2019) e02681.
[167] N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes, Journal of Power Sources, 107 (2002) 48-55.
[168] Q. Chen, T. Zhang, Z. Hou, W. Zhuang, Z. Sun, Y. Jiang, L. Huang, Large-scale sodiophilic/buffered alloy architecture enables deeply cyclable Na metal anodes, Chemical Engineering Journal, 433 (2022) 133270.
[169] Y. Zhang, G. Wang, F. Yu, G. Xu, Z. Li, M. Zhu, Z. Yue, M. Wu, H.-K. Liu, S.-X. Dou, Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries, Chemical Engineering Journal, 416 (2021) 128062.
[170] Y. Guo, P. Niu, Y. Liu, Y. Ouyang, D. Li, T. Zhai, H. Li, Y. Cui, An autotransferable g‐C3N4 Li+‐modulating layer toward stable lithium anodes, Advanced Materials, 31 (2019) 1900342.
[171] B. Thirumalraj, T.T. Hagos, C.-J. Huang, M.A. Teshager, J.-H. Cheng, W.-N. Su, B.-J. Hwang, Nucleation and growth mechanism of lithium metal electroplating, Journal of the American Chemical Society, 141 (2019) 18612-18623.
[172] Z. Zhang, R. Wang, J. Hu, M. Li, K. Wang, K. Jiang, An in situ self-assembled 3D zincophilic heterogeneous metal layer on a zinc metal surface for dendrite-free aqueous zinc-ion batteries, Sustainable Energy & Fuels, 5 (2021) 5843-5850.

QR CODE