簡易檢索 / 詳目顯示

研究生: 陳首志
Shou-Zhi Chen
論文名稱: 以循序逼近負載電容調整為基礎之高精度工作週期校正電路
High Accuracy Duty Cycle Corrector Based on SAR Loading Capacitor Adjustment
指導教授: 陳伯奇
Poki Chen
口試委員: 李鎮宜
Chen-Yi Lee
劉深淵
Shen-Iuan Liu
鄭國興
Kuo-Hsing Cheng
楊育哲
Y.-C. Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 122
中文關鍵詞: 工作週期校正電容切換連續逼近暫存器高精度廉價
外文關鍵詞: duty cycle corrector, switched capacitor, successive approximation register, high accuracy, low cost
相關次數: 點閱:258下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

時下電子系統之參考時脈通常是由鎖相迴路或延遲鎖定迴路倍頻產生,由於鎖相迴路或延遲鎖定迴路的輸出訊號的工作週期限於製程變異種種因素很難做到50%,對雙倍資料速度同步動態隨機存取記憶體(Double Data Rate SDRAM、簡稱DDR SDRAM),雙取樣類比至數位轉換器(Double-Sampling ADC),動態邏輯電路(Dynamic Logic),半速率時脈資料回復電路(Clock Data Recovery、簡稱CDR)等需要時脈訊號的上升邊緣或下降邊緣皆能運作的電路而言,會相當嚴重地影響其工作效能。此時,便需利用工作週期校正電路將參考時脈之工作週期校正回50%,其重要性可見一般。
工作週期校正電路在架構上可分為數位式與類比式兩種,其中數位式架構又可分為回授式與非回授式,鎖定速度快但準確性較差,類比式架構通常以回授式為主,鎖定速度較慢但卻可達到較高的準確性。
本論文實現一個以循序逼近負載電容調整延遲線之高精度工作週期校正電路,電路架構屬於數位回授式,不但可以快速鎖定,而且準確性也可和類比式架構相互媲美。本晶片採用TSMC 0.18μm 標準金氧半製程來實現,可校正頻率範圍為1GHz~1.6GHz,可校正工作週期範圍為30%~70%,校正後的誤差只有-0.44%~+0.54%。另外,本電路理論上僅需8個時脈週期即可校正完成,晶片面積也僅有0.215 × 0.2 mm2,在1GHz情況下,功率消耗為22.5mW,成效卓著。


Nowadys the reference clock of electronic systems or chips is usually generated by phase-locked loop (PLL) or delay-locked loop (DLL). Due to the process, voltage and temperature (PVT) variations, the duty cycle of PLL or DLL output can be hardly achieved as 50%. It will seriously deteriorate the performance of the systems whose both rising and falling edges are used for triggering or strobing, such as Double data rate SDRAM, DDR SRAM, Double-Sampling ADC, Dynamic logic, Clock Data Recovery. The performance of the above systems can be substantially improved by adopting duty cycle correctors to calibrate the duty cycle of the reference clock back to 50%.
Conventionally, the duty cycle correctors can be further divided into analog type and digital type. The digital DCC can also be sub-divided into non-feedback type and feedback type. Digital DCCs of both types own fast locking capability at the expense of relatively poor accuracy. The analog DCC is usually implemented as feedback type whose locking speed is slow owns comparatively high accuracy.
In this thesis, a digital duty cycle corrector based on SAR loading capacitor adjustment will be proposed to achieve both fast locking and high accuracy. The test chips have been fabricated in TSMC 0.18μm standard CMOS process. The operation frequency range is within 1GHz~1.6GHz and the correctable duty cycle range is between 30%~70% respectively. The error measurement is -0.44%~+0.54% which is the best among current DCCs. Theoretically, the duty cycle correction can be completed within 8 reference clocks. The chip area is merely 0.215 x 0.2 mm2 and the power consumption is 22.5mW at 1GHz.

第一章 緒論 1 1-1研究動機 1 1-2研究背景 4 1-3論文架構 5 第二章 工作週期校正電路 6 2-1數位式工作週期校正電路 6 2-1.1數位非回授式工作週期校正電路 6 2-1.2數位回授式工作週期校正電路 18 2-2類比式工作週期校正電路 25 2-3綜合比較 31 第三章 以循序逼近負載電容調整為基礎之工作週期校正電路 34 3-1架構簡介 34 3-2設計概念 36 3-3工作週期校正電路細部電路介紹 39 3-4以切換電容為基礎之可調式延遲線 42 3-5全週期掃描電路/時間至數位轉換器 44 3-6時間控制單元 45 3-7以連續逼近暫存器為基礎之細調電路 47 3-8奇數補償電路 49 第四章 電路設計與模擬 51 4-1設計流程與考量 51 4-1.1類比區塊設計 51 4-1.2數位區塊設計 53 4-1.3混合式設計 54 4-2數位區塊與類比區塊劃分之考量 55 4-3類比電路設計與模擬 56 4-3.1以切換電容為基礎之可調延遲線 56 4-3.2全週期掃描電路/時間至數位轉換器 59 4-3.3 5對1多工器 61 4-3.4時間控制單元 62 4-3.5奇數補償電路 63 4-3.6脈衝產生器 65 4-3.7 SR正反器 66 4-4數位電路設計與模擬 69 4-4.1優先編碼器 69 4-3.2連續逼近暫存器 72 4-5混合模式設計與模擬 75 4-5.1功能驗證模擬 75 4-5.2 PVT變異模擬 79 第五章 晶片佈局與量測結果 96 5-1晶片佈局考量 96 5-1.1屏蔽技巧 96 5-1.2仿效元件 98 5-2 GSG I/O Pad 99 5-3佈局圖與晶片規劃 100 5-4晶片量測 103 5-4.1量測環境 103 5-4.2量測結果 107 5-5晶片效能比較 115 5-6未來展望 117 文獻參考 118

[1] Mark Horowitz et al., “PLL design for a 500 MB/s interface,” IEEE ISSCC, vol. 29, pp. 160-161, Feb. 1993
[2] T.-H. Lee et al., “A 2.5V CMOS delay locked loop for 18Mbit 500 megabyte/s DRAM,” IEEE J. Solid-State Circuits, vol. 29, pp. 1491-1496, Dec. 1994.
[3] Neil H.E. Weste and Kamran Eshraghian,”principles of CMOS VLSI Design : A systems Perspective 2/E,” Addison-Wesley, 1998.
[4] Seung-Jun Bae et al.,“An 80 nm 4 G/s/pin 32 bit 812Mb GDDR4 Graphics DRAM With Low Power and Low Noise Data Bus Inversion” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 121-131, Jan. 2008
[5] Nasser Kurd et al.,“Next Generation Intel® Core™ Micro-Architecture (Nehalem) Clocking Data Bus Inversion” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1121-1129, Apr. 2009
[6] K.-H. Kim et al., “Built-in duty cycle corrector using coded phase blending scheme for DDR/DDR2 synchronous DRAM applications,” IEEE Symposium on VLSI Circuits, pp. 287-288, Jun. 2003.
[7] T. Mantano et al., “A 1-Gb/s/pin 512-Mb DDRII SDRAM using a digital DLL and a slew-rate-controlled output buffer,” IEEE J. Solid-State Circuits, vol. 35, pp. 762-768, May. 2003.
[8] S.-J. Jang et al., “ASMD with duty cycle correction scheme for high-speed DRAM,” Electronics Letters, vol. 37, pp. 1004-1006, Aug. 2001.
[9] J.-B. Lee et al., “Digitally-controlled DLL and I/O circuits for 500 Mb/s/pin 16 DDR SDRAM,” IEEE ISSCC, pp. 68-69, Feb. 2001.
[10] Y. Takai et al., “A 250-Mb/s/pin, 1-Gb Double-Data-Rate SDRAM with a bidirectional delay and an interbank shated redundancy scheme,” IEEE J. Solid-State Circuits, vol. 35, pp. 149-159, Feb. 2000.
[11] M.-B. Lin, “VLSI System Design Lecture Notes,” 2006.
[12] P.-H. Yang and J.-S. Wang, “Low-voltage pulsewidth control loops for SOC applications”, IEEE J. Solid-State Circuits, vol.37, pp. 1348-1351, Oct. 2002.
[13] H. Huh et al., “A CMOS dual-band fractional-n synthesizer with reference doubler and compensated charge pump,” IEEE ISSCC, pp. 100-516, Feb. 2004.
[14] P.-K. Hanumolu et al., “A analysis of PLL clock jitter in high-speed serial links,” IEEE Transactions on Circuits and Systems II, vol. 50, pp. 879-886, Nov. 2003.
[15] C. Jeong et al., “Digital delay locked loop with open-loop digital duty cycle corrector for 1.2Gb/s/pin double data rate SDRAM,” IEEE ISSCC, pp. 379-382, Sep. 2004.
[16] Y.-J. Jung et al., “A dual-loop delay-locked loop using multiple voltage -controlled delay lines,” IEEE J. Solid-State Circuits, vol. 36, pp. 784-791, May 2001.
[17] J. Kim, M.-A. Horowitz, and G.-Y. Wei, “Design of CMOS adaptive-bandwidth PLL/DLLs : A general approach,” IEEE Transactions on Circuits and Systems II, vol. 50, pp. 860-869, Nov. 2003.
[18] B.-G. Kim et al., “A 500MHz DLL with second order duty cycle corrector for low Jitter,” IEEE CICC, pp. 325-328, Sep. 2005.
[19] L. Li, J.-H. Chen, and R.-C. Chang, “A low jitter delay-locked loop with a realignment duty cycle corrector,” IEEE SOCC, pp. 73-76, Sep. 2005.
[20] Y.-J. Jung et al., “A Low jitter dual loop DLL using multiple VCDLs with a duty cycle corrector,” IEEE Symposium on VLSI Circuits, pp. 50-51, Jun. 2000.
[21] Y.-M. Wang and J.-S. Wang, “An all-digital 50% duty-cycle corrector,” IEEE ISCAS, vol. 2, pp. 925-928, May 2004.
[22] B.-J. Chen, S.-K. Kao, and S.-I. Liu, “An All-Digital Duty Cycle Corrector,” IEEE Symposium on VLSI-DAT, pp. 1-4, Apr. 2006.
[23] C. Yoo, C. Jeong, and J. Kih, “Open-loop full-digital duty cycle correction circuit,” Electronic Letters, vol. 41, pp. 635-636, May 2005.
[24] B.-W. Garlepp et al., “A portable digital DLL for high-speed CMOS interface circuits,” IEEE J. Solid-State Circuits, vol. 34, pp. 632-644, May 1999.
[25] S.-K. Kao and S.-I. Liu, “All-Digital Fast-Locked Synchronous Duty-Cycle Corrector”, IEEE Transactions on circuit and systems-II vol. 53 , no. 12 dec 2006.
[26] S.-K. Kao and S.-I. Liu, “A Wide-Range All-Digital Duty Cycle Corrector with a Period Monitor,” IEEE EDSSC, pp. 349-352, Dec. 2007.
[27] J.-J. Nam and H.-J. Park, “An all-digital CMOS duty cycle corrector circuit with a duty-cycle correction range of 15-to85% for multi-phase applications,” IEICE Trans. Electron., vol. 88, pp. 773-777, Apr. 2005.
[28] K. Agarwal and R. Montoye, “A Duty-Cycle Correction Circuit for High-Frequency Clocks,” IEEE Symposium on VLSI Circuits, pp. 106-107, Jun. 2006.
[29] J.-S. Humble et al., “A Clock Duty-Cycle Correction and Adjustment Circuit,” IEEE ISSCC, pp. 2132-2141, Feb. 2006.
[30] P. Chen, S.-W. Chen, and J.-S. Lai, “A low power wide range duty cycle corrector based on pulse shrinking/stretching mechanism”, IEEE Asian Solid-State Circuits Conference, pp. 460-463, Nov. 2007.
[31] H.-Y. Huang C.-M. Liang and S.-J. Sun, “Low-power 50% duty cycle corrector”, IEEE International Symposium on ISCAS p-p. 2362-2365, May. 2008.
[32] B. Razavi, “Design of analog CMOS integratied circuits,” McGraw-Hill, 2001.
[33] P. Allen and D. Holberg, “CMOS analog circuit design ,” New York OXFORD, 2002.
[34] D. Johns and K. Martin, “Analog intergrated circuit design,” John Wiley & Sons, 1997.

QR CODE