簡易檢索 / 詳目顯示

研究生: Bryan Hubert
Bryan Hubert
論文名稱: 以鐵基金屬玻璃鍍層濾紙催化光激活過氧單硫酸鹽 降解偶氮染料之應用
Fe-based Thin-Film Metallic Glass Coated Filter Paper as a Peroxymonosulfate Activator for Azo Dye Degradation Application
指導教授: 朱 瑾
Jinn P. Chu
姚栢文
Pakman Yiu
口試委員: 劉志成
Jhy-Chern Liu
今榮東洋子
Toyoko Imae
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 93
中文關鍵詞: 金屬玻璃薄膜非晶材料零價金屬過氧單硫酸鹽活化劑光催化染料降解可重複使用性濾紙
外文關鍵詞: thin-film metallic glass, amorphous material, zero-valent metals, peroxymonosulfate activator, photocatalytic, dye degradation, reusability, filter paper
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 ii Abstract iii Acknowledgements iv Contents v List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Objectives of study 1 Chapter 2 Literature Review 3 2.1 Dyes as pollutants in Industrial Wastewater 3 2.1.1 Classifications and uses of dyes 3 2.1.2 Toxicities and impacts of dyes in industrial wastewater on environmental life 4 2.1.3 Dye removal methods in industrial wastewater treatment 5 2.1.3.1 Coagulation and flocculation 7 2.1.3.2 Ozonation 8 2.1.3.3 Photochemical 8 2.1.3.4 Bioremediation 8 2.1.3.5 Adsorption/biosorption 9 2.1.3.6 Electrochemical 9 2.1.3.7 Ion-exchange 9 2.1.3.8 Filtration technology 9 2.1.3.9 Oxidation 10 2.1.3.10 Sonolysis 10 2.1.3.11 Advanced oxidation process (AOP) 10 2.2 Metallic glass (MG) 11 2.2.1 Common Processing of MGs 13 2.2.1.1 Fabrication of bulk metallic glass 13 2.2.1.2 Fabrication and unique properties of Thin Film Metallic Glasses (TFMGs) 14 2.2.1.3 Fabrication and properties of Metallic Glass Nanotube Arrays (MeNTAs) 21 2.2.2 Characteristics of MGs related to dye degradation application 24 2.2.2.1 Atomic composition 24 2.2.2.2 Atomic configuration 25 2.2.2.3 Porosity 26 2.2.2.4 Surface roughness 26 2.2.3 Fe-based metallic glass as oxidants activator in dyes degradation application 26 Chapter 3 Experimental Procedure 29 3.1 TFMG-coated filter paper fabrication 30 3.1.1 Substrate preparation and Thin-film Metallic Glass (TFMG) deposition 30 3.2 Characterization of TFMG 31 3.2.1 X-ray Power Diffraction diffractograms (XRD) 31 3.2.2 Scanning electron microscope with energy-dispersive x-ray spectroscopy (SEM with EDS and FIB) 32 3.2.3 X-ray photoelectron spectroscopy (XPS) 33 3.2.4 Laser Confocal Microscope 34 3.2.5 Brunauer, Emmett and Teller (BET) method and Advanced Capillary Flow Porometer 34 3.3 Catalytic dye degradation experiments 35 3.3.1 Preparation of standard curve and dye degradation test 35 3.3.2 Reusability test 36 3.3.3 Single parameter effect on dye degradation test 37 Chapter 4 Results and Discussion 38 4.1 Characterization of TFMG 38 4.1.1 Cross-sectional thickness analysis 38 4.1.2 Crystallographic analysis 40 4.1.3 Surface morphology and chemical composition analysis 41 4.1.4 Chemical bonding state analysis 55 4.1.5 Pore size distribution analysis 57 4.1.6 Specific surface area analysis 58 4.1.7 Surface roughness analysis 59 4.2 Catalytic performance 62 4.2.1 Standard Curve of Orange G 62 4.2.2 UV-Vis spectra and decolorization of OG dye using Fe-based TFMG coated filter paper 62 4.2.3 Reusability of Fe-based TFMG coated filter paper in OG dye degradation 65 4.3 Single parameter effect on OG degradation 66 4.3.1 Effect of catalyst dosage 66 4.3.2 Effect of dye concentration 67 4.3.3 Effect of peroxymonosulfate concentration 69 4.3.4 Effect of light intensity 70 4.3.5 Effect of film thickness 71 Chapter 5 Conclusions and Future works 73 5.1 Conclusions 73 5.2 Future works 74 References 75

[1] Moussavi G, Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of hazardous materials 2009;168:806-12.
[2] Allen S, Koumanova B. Decolourisation of water/wastewater using adsorption. Journal of the University of Chemical Technology and Metallurgy 2005;40:175-92.
[3] Al-Ghouti MA, Al-Degs YS, Khraisheh MA, Ahmad MN, Allen SJ. Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite. Journal of environmental management 2009;90:3520-7.
[4] Hunger K. Industrial dyes: chemistry, properties, applications: John Wiley & Sons; 2007.
[5] Gupta V. Application of low-cost adsorbents for dye removal–a review. Journal of environmental management 2009;90:2313-42.
[6] Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of environmental management 2012;93:154-68.
[7] Kusic H, Juretic D, Koprivanac N, Marin V, Božić AL. Photooxidation processes for an azo dye in aqueous media: Modeling of degradation kinetic and ecological parameters evaluation. Journal of hazardous materials 2011;185:1558-68.
[8] Uday USP, Bandyopadhyay TK, Bhunia B. Bioremediation and detoxification technology for treatment of dye (s) from textile effluent. Textile wastewater treatment 2016;4:75-92.
[9] Schlichter S, Dennehy M, Alvarez M. Activation of Peroxymonosulfate and Persulfate by Metal Loaded Mesoporous Catalysts for Orange G Dye Degradation. Environmental Processes 2019;6:805-18.
[10] Crini G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology 2006;97:1061-85.
[11] Kobya M, Bayramoglu M, Eyvaz M. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections. Journal of hazardous materials 2007;148:311-8.
[12] Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource technology 2001;77:247-55.
[13] Gao M-T, Hirata M, Takanashi H, Hano T. Ozone mass transfer in a new gas–liquid contactor–Karman contactor. Separation and purification technology 2005;42:145-9.
[14] Mirkhani V, Tangestaninejad S, Moghadam M, Habibi M, Rostami-Vartooni A. Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO 2 photocatalyst. Journal of the Iranian Chemical Society 2009;6:578-87.
[15] Mittal A, Mittal J, Malviya A, Gupta V. Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of colloid and interface science 2010;344:497-507.
[16] Saleh TA, Gupta VK. Column with CNT/magnesium oxide composite for lead (II) removal from water. Environmental Science and Pollution Research 2012;19:1224-8.
[17] Aquino JM, Pereira GF, Rocha-Filho RC, Bocchi N, Biaggio SR. Electrochemical degradation of a real textile effluent using boron-doped diamond or β-PbO2 as anode. Journal of hazardous materials 2011;192:1275-82.
[18] Slokar YM, Le Marechal AM. Methods of decoloration of textile wastewaters. Dyes and pigments 1998;37:335-56.
[19] Pearce C, Lloyd J, Guthrie J. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and pigments 2003;58:179-96.
[20] Daneshvar N, Khataee A, Ghadim AA, Rasoulifard M. Decolorization of CI Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of hazardous materials 2007;148:566-72.
[21] Adewuyi YG. Sonochemistry: environmental science and engineering applications. Industrial & Engineering Chemistry Research 2001;40:4681-715.
[22] Arslan‐Alaton I. A review of the effects of dye‐assisting chemicals on advanced oxidation of reactive dyes in wastewater. Coloration Technology 2003;119:345-53.
[23] Dojčinović BP, Roglić GM, Obradović BM, Kuraica MM, Kostić MM, Nešić J, et al. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge. Journal of hazardous materials 2011;192:763-71.
[24] Koprivanac N, Bosanac G, Grabaric Z, Papic S. Treatment of wastewaters from dye industry. Environmental technology 1993;14:385-90.
[25] Valh JV, Le Marechal AM, Vajnhandl S, Jerič T, Šimon E. Water in the textile industry. 2011.
[26] Pérez A, Poznyak T, Chairez I. Effect of Inorganic Additives in the Textile Dyes Removal by Ozonation. Textile Wastewater Treatment 2016:55.
[27] Foo K, Hameed BH. An overview of dye removal via activated carbon adsorption process. Desalination and Water Treatment 2010;19:255-74.
[28] Saratale G, Kalme S, Bhosale S, Govindwar S. Biodegradation of kerosene by Aspergillus ochraceus NCIM‐1146. Journal of basic microbiology 2007;47:400-5.
[29] Saratale RG, Saratale GD, Chang J-S, Govindwar SP. Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers 2011;42:138-57.
[30] Choy KK, McKay G, Porter JF. Sorption of acid dyes from effluents using activated carbon. Resources, Conservation and Recycling 1999;27:57-71.
[31] Ho Y-S, McKay G. Sorption of dyes and copper ions onto biosorbents. Process Biochemistry 2003;38:1047-61.
[32] Chwalisz K, Shao-Qing S, Garfield RE, Beier HM. Cervical ripening in guinea-pigs after a local application of nitric oxide. Human reproduction (Oxford, England) 1997;12:2093-101.
[33] de Dios MF, Iglesias O, Bocos E, Pazos M, Sanromán M. Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation. Journal of Industrial and Engineering Chemistry 2014;20:3754-60.
[34] Salazar R, Ureta-Zañartu M. Mineralization of triadimefon fungicide in water by electro-Fenton and photo electro-Fenton. Water, Air, & Soil Pollution 2012;223:4199-207.
[35] Shirkoohi MG, Mostafazadeh AK, Ouarda Y, Drogui P. Role of chemical treatments in pharmaceuticals degradation and its consequences and environmental risks. Current Developments in Biotechnology and Bioengineering: Elsevier; 2020. p. 521-48.
[36] Feng Y, Yang L, Liu J, Logan BE. Electrochemical technologies for wastewater treatment and resource reclamation. Environmental Science: Water Research & Technology 2016;2:800-31.
[37] Sharma S, Yadav A, Ahmad W. The Classification, Characterization, and Application of Ion Exchange Resins: A General Survey. International Conference on New Horizons in Green Chemistry & Technology (ICGCT)2018.
[38] Raghavacharya C. Colour removal from industrial effluents: a comparative review of available technologies. Chemical engineering world 1997;32:53-4.
[39] Chadi NE, Merouani S, Hamdaoui O. Characterization and application of a 1700-kHz acoustic cavitation field for water decontamination: a case study with toluidine blue. Applied Water Science 2018;8:160.
[40] Forgacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environment international 2004;30:953-71.
[41] Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia 2007;55:4067-109.
[42] Chen J, Zhu L. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catalysis Today 2007;126:463-70.
[43] Zhang C, Zhu Z, Zhang H, Hu Z. Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys. Chinese science bulletin 2011;56:3988-92.
[44] Wang X, Pan Y, Zhu Z, Wu J. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process. Chemosphere 2014;117:638-43.
[45] Zhang L-C, Jia Z, Lyu F, Liang S-X, Lu J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Progress in Materials Science 2019:100576.
[46] Tang Y, Shao Y, Chen N, Yao K-F. Rapid decomposition of Direct Blue 6 in neutral solution by Fe–B amorphous alloys. RSC Advances 2015;5:6215-21.
[47] Tang Y, Shao Y, Chen N, Liu X, Chen S, Yao K. Insight into the high reactivity of commercial Fe–Si–B amorphous zero-valent iron in degrading azo dye solutions. Rsc Advances 2015;5:34032-9.
[48] Deng Z, Zhang X, Chan K, Liu L, Li T. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation. Chemosphere 2017;174:76-81.
[49] Zhang C, Zhu Z, Zhang H. Effects of the addition of Co, Ni or Cr on the decolorization properties of Fe-Si-B amorphous alloys. Journal of Physics and Chemistry of Solids 2017;110:152-60.
[50] Zhang C, Zhu Z, Zhang H, Hu Z. On the decolorization property of Fe–Mo–Si–B alloys with different structures. Journal of non-crystalline solids 2012;358:61-4.
[51] Xie S, Huang P, Kruzic JJ, Zeng X, Qian H. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Scientific reports 2016;6:21947.
[52] Weng N, Wang F, Qin F, Tang W, Dan Z. Enhanced azo-dyes degradation performance of Fe-Si-BP nanoporous architecture. Materials 2017;10:1001.
[53] Jia Z, Wang Q, Sun L, Wang Q, Zhang LC, Wu G, et al. Attractive In Situ Self‐Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance. Advanced Functional Materials 2019;29:1807857.
[54] Wang J, Jia Z, Liang S, Qin P, Zhang W, Wang W, et al. Fe73. 5Si13. 5B9Cu1Nb3 metallic glass: Rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation. Materials & Design 2018;140:73-84.
[55] Chen S, Yang G, Luo S, Yin S, Jia J, Li Z, et al. Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition. Journal of Materials Chemistry A 2017;5:14230-40.
[56] Wang J-Q, Liu Y-H, Chen M-W, Louzguine-Luzgin DV, Inoue A, Perepezko JH. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders. Scientific reports 2012;2:1-6.
[57] Wang P, Wang J-Q, Li H, Yang H, Huo J, Wang J, et al. Fast decolorization of azo dyes in both alkaline and acidic solutions by Al-based metallic glasses. Journal of Alloys and Compounds 2017;701:759-67.
[58] Qin X, Zhu Z, Liu G, Fu H, Zhang H, Wang A, et al. Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass. Scientific reports 2015;5:18226.
[59] Lv Z, Liu X, Jia B, Wang H, Wu Y, Lu Z. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Scientific reports 2016;6:1-11.
[60] Saputra E, Muhammad S, Sun H, Ang H-M, Tadé MO, Wang S. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. Journal of colloid and interface science 2013;407:467-73.
[61] Shukla P, Sun H, Wang S, Ang HM, Tadé MO. Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. Separation and Purification Technology 2011;77:230-6.
[62] Shukla P, Wang S, Singh K, Ang H, Tadé MO. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Applied Catalysis B: Environmental 2010;99:163-9.
[63] Shukla P, Sun H, Wang S, Ang HM, Tadé MO. Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catalysis Today 2011;175:380-5.
[64] Yang Y, Zhang H, Yan Y. The preparation of Fe2O3-ZSM-5 catalysts by metal-organic chemical vapour deposition method for catalytic wet peroxide oxidation of m-cresol. Royal Society open science 2018;5:171731.
[65] Wang JQ, Liu YH, Chen MW, Xie GQ, Louzguine‐Luzgin DV, Inoue A, et al. Rapid Degradation of Azo Dye by Fe‐Based Metallic Glass Powder. Advanced Functional Materials 2012;22:2567-70.
[66] Liu Y, Wang H, Li S, Wang S, Wang W, Hou W, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Materialia 2017;126:58-66.
[67] Pei Y, Zhou G, Luan N, Zong B, Qiao M, Tao FF. Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys. Chemical Society Reviews 2012;41:8140-62.
[68] Li H, Wei W, Zhao Y, Li H. Preparation and catalytic applications of amorphous alloys. Catalysis 2015;27:144-86.
[69] Liu Y, Fujita T, Hirata Ae, Li S, Liu H, Zhang W, et al. Deposition of multicomponent metallic glass films by single-target magnetron sputtering. Intermetallics 2012;21:105-14.
[70] Kassa ST, Hu C-C, Liao Y-C, Chen J-K, Chu JP. Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane. Surface and Coatings Technology 2019;368:33-41.
[71] Ashby M, Greer A. Metallic glasses as structural materials. Scripta Materialia 2006;54:321-6.
[72] Chang C, Lee C, Chu J, Liaw P, Jang S. Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass. Thin Solid Films 2016;616:431-6.
[73] Gizaw ET, Yeh H-H, Chu JP, Hu C-C. Fabrication and characterization of nitrogen selective thin-film metallic glass/polyacrylonitrile composite membrane for gas separation. Separation and Purification Technology 2020;237:116340.
[74] Lee J, Huang K-H, Hsu K-C, Tung H-C, Lee J-W, Duh J-G. Applying composition control to improve the mechanical and thermal properties of Zr–Cu–Ni–Al thin film metallic glass by magnetron DC sputtering. Surface and Coatings Technology 2015;278:132-7.
[75] Yu C-C, Lee C, Chu JP, Greene J, Liaw PK. Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature. APL Materials 2016;4:116101.
[76] Chiang C, Chu J, Liu F, Liaw P, Buchanan R. A 200 nm thick glass-forming metallic film for fatigue-property enhancements. Applied physics letters 2006;88:131902.
[77] Chen W-T, Li S-S, Chu JP, Feng KC, Chen J-K. Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance. Biosensors and Bioelectronics 2018;102:129-35.
[78] Chen J-K, Chen W-T, Cheng C-C, Yu C-C, Chu JP. Metallic glass nanotube arrays: Preparation and surface characterizations. Materials Today 2018;21:178-85.
[79] Chen W-T, Manivannan K, Yu C-C, Chu JP, Chen J-K. Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass. Nanoscale 2018;10:1366-75.
[80] Chen J-K, Wang J-H, Cheng C-C, Ko F-H. Fabrication of biomimetic device with PS-b-PNIPAAm copolymer pillars mimicking a gecko foot pad. Sensors and Actuators B: Chemical 2012;174:332-41.
[81] Lu Y-C. Metallic Glass Nnanotube Arrays as a Surface-Enhanced Raman Scattering (SERS) active Substrate for Crystal Violet Adsorption. NTUST 2019.
[82] Sun Y, Wang P, Bian X. Phenol degradation property of Fe-based amorphous alloys with different composition. 2013 International Conference on Materials for Renewable Energy and Environment: IEEE; 2014. p. 621-5.
[83] Li R, Liu X, Wang H, Wu Y, Chan K, Lu Z. Flexible glassy grid structure for rapid degradation of azo dye. Materials & Design 2018;155:346-51.
[84] Zhang C, Zhu Z, Zhang H. Mg-based amorphous alloys for decolorization of azo dyes. Results in physics 2017;7:2054-6.
[85] Jia Z, Kang J, Zhang W, Wang W, Yang C, Sun H, et al. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B: Environmental 2017;204:537-47.
[86] Hu YC, Wang YZ, Su R, Cao CR, Li F, Sun CW, et al. A highly efficient and self‐stabilizing metallic‐glass catalyst for electrochemical hydrogen generation. Advanced Materials 2016;28:10293-7.
[87] Luo X, Li R, Zong J, Zhang Y, Li H, Zhang T. Enhanced degradation of azo dye by nanoporous-copper-decorated Mg–Cu–Y metallic glass powder through dealloying pretreatment. Applied surface science 2014;305:314-20.
[88] Xu W, Zhu S, Liang Y, Cui Z, Yang X, Inoue A, et al. A highly efficient electrocatalyst based on amorphous Pd–Cu–S material for hydrogen evolution reaction. Journal of Materials Chemistry A 2017;5:18793-800.
[89] Das S, Bandi V, Arora HS, Veligatla M, Garrison S, D'Souza F, et al. Synergistic catalytic effect of iron metallic glass particles in direct blue dye degradation. Journal of Materials Research 2015;30:1121-7.
[90] Ramya M, Karthika M, Selvakumar R, Raj B, Ravi K. A facile and efficient single step ball milling process for synthesis of partially amorphous Mg-Zn-Ca alloy powders for dye degradation. Journal of Alloys and Compounds 2017;696:185-92.
[91] Mbarek WB, Azabou M, Pineda E, Fiol N, Escoda L, Suñol J, et al. Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling. RSC advances 2017;7:12620-8.
[92] Mbarek WB, Pineda E, Escoda L, Suñol JJ, Khitouni M. High efficiency decolorization of azo dye Reactive Black 5 by Ca-Al particles. Journal of environmental chemical engineering 2017;5:6107-13.
[93] Das S, Garrison S, Mukherjee S. Bi‐Functional Mechanism in Degradation of Toxic Water Pollutants by Catalytic Amorphous Metals. Advanced Engineering Materials 2016;18:214-8.
[94] Liang S, Jia Z, Zhang W, Li X, Wang W, Lin H, et al. Ultrafast activation efficiency of three peroxides by Fe78Si9B13 metallic glass under photo-enhanced catalytic oxidation: a comparative study. Applied Catalysis B: Environmental 2018;221:108-18.
[95] Wang P, Bian X, Li Y. Catalytic oxidation of phenol in wastewater—a new application of the amorphous Fe 78 Si 9 B 13 alloy. Chinese Science Bulletin 2012;57:33-40.
[96] Liang S, Jia Z, Zhang W, Wang W, Zhang L. Rapid malachite green degradation using Fe73. 5Si13. 5B9Cu1Nb3 metallic glass for activation of persulfate under UV–Vis light. Materials & Design 2017;119:244-53.
[97] Jia Z, Duan X, Qin P, Zhang W, Wang W, Yang C, et al. Disordered atomic packing structure of metallic glass: toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance. Advanced Functional Materials 2017;27:1702258.
[98] Jia Z, Liang S, Zhang W, Wang W, Yang C, Zhang L. Heterogeneous photo Fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe78Si9B13 and Fe73. 5Si13. 5B9Cu1Nb3 alloys: The influence of adsorption. Journal of the Taiwan Institute of Chemical Engineers 2017;71:128-36.
[99] Kwan WP, Voelker BM. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental science & technology 2003;37:1150-8.
[100] Yang X-j, Xu X-m, Xu J, Han Y-f. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. Journal of the American Chemical Society 2013;135:16058-61.
[101] Sarkar P, Roy RK, Panda AK, Mitra A. Optimization of process parameters for developing FeCoSiB amorphous microwires through in-rotating-water quenching technique. Applied Physics A 2013;111:575-80.
[102] Lin C-P, Chen H, Nakaruk A, Koshy P, Sorrell C. Effect of annealing temperature on the photocatalytic activity of TiO2 thin films. Energy Procedia 2013;34:627-36.
[103] Cristea D, Cunha L, Gabor C, Ghiuta I, Croitoru C, Marin A, et al. Tantalum Oxynitride Thin Films: Assessment of the Photocatalytic Efficiency and Antimicrobial Capacity. Nanomaterials 2019;9:476.
[104] Xu X-R, Li X-Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and purification technology 2010;72:105-11.
[105] Vinayagam M, Ramachandran S, Ramya V, Sivasamy A. Photocatalytic degradation of orange G dye using ZnO/biomass activated carbon nanocomposite. Journal of environmental chemical engineering 2018;6:3726-34.
[106] Thennarasu G, Kavithaa S, Sivasamy A. Photocatalytic degradation of Orange G dye under solar light using nanocrystalline semiconductor metal oxide. Environmental Science and Pollution Research 2012;19:2755-65.
[107] Hameed MS, Sabarinath S, Thayumanavan M, Easwaran VS, Sathiskumar B. Bio-Degradation of Orange G Dye using Microbial Action. 2016.
[108] Chang M-C, Shu H-Y, Tseng T-H, Hsu H-W. Supported zinc oxide photocatalyst for decolorization and mineralization of orange G dye wastewater under UV365 irradiation. International Journal of Photoenergy 2013;2013.
[109] Liu P, Zhang JL, Zha MQ, Shek CH. Synthesis of an Fe rich amorphous structure with a catalytic effect to rapidly decolorize Azo dye at room temperature. ACS applied materials & interfaces 2014;6:5500-5.
[110] Wang L, Yao Y, Zhang Z, Sun L, Lu W, Chen W, et al. Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. Chemical Engineering Journal 2014;251:348-54.
[111] Zhao Y, Si J, Song J, Yang Q, Hui X. Synthesis of Mg–Zn–Ca metallic glasses by gas-atomization and their excellent capability in degrading azo dyes. Materials Science and Engineering: B 2014;181:46-55.

無法下載圖示 全文公開日期 2025/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE