簡易檢索 / 詳目顯示

研究生: 周光宇
Kuang-Yu Chou
論文名稱: 內燃機進氣閥入射角對缸內氣流滾轉運動的影響與最佳化設計
Optimizing Inlet Valve Inclination Angle of an Internal Combustion Engine
指導教授: 黃榮芳
Rong Fung Huang
口試委員: 許清閔
Ching Min Hsu
陳佳
none
張家和
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 396
中文關鍵詞: 引擎內燃機進氣閥缸內流場滾轉運動
外文關鍵詞: internal combustion engine, inlet valve inclination angle, tumble motion
相關次數: 點閱:205下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討進氣閥入射角對缸內氣流滾轉運動的影響。針對一部二閥單缸四行程125 c.c.引擎,在引擎轉速1800 RPM及4000 RPM下,改變進氣閥入射角(19o至24o),使用商用套裝計算流體力學(Computational Fluid Dynamics, CFD)軟體 CONVERGE,對進氣與壓縮行程期間進行計算模擬,探討並分析不同進氣閥入射角(θ)下,缸內氣流繞著汽缸徑向滾轉(Tumble)運動的變化。進氣閥入射角的改變會影響隨著曲軸角度變化的缸內流場模態、容積效率、缸內平均壓力與溫度。滾轉運動的強度可以藉由計算面平均渦度滾轉比、體平均渦度滾轉比等量化呈現。考慮缸內流場模態衍化、體平均滾轉比與容積效率,尋求進氣閥入射角之最佳化數值。缸內流場模態如果含有較完整的同向旋轉大渦流結構,且渦流旋轉中心較接近瞬間缸內垂直面的中心點,則體平均滾轉比數值會較大。容積效率在本研究所改變的進氣閥入射角範圍內,變化不明顯,最大值出現在進氣閥入射角19o,約為67.98%;最小值出現在進氣閥入射角22o,約為67.77%。最大值與最小值相差僅0.2%左右,所以,在本研究範圍內,進氣閥入射角對容積效率的影響不需考慮。所以體平均渦度滾轉比與缸內流場模態可以視為是決定最佳化進氣閥入射角的主要參數。以缸內流場模態來衡量,θ = 19o與20o時,渦流結構最完整且可延續至壓縮行程,θ = 21o時次之;θ ≧ 22o時,渦流結構的完整度不及θ ≦ 21o時。當θ ≧ 22o時,體平均滾轉比大約在0.11至0.12之間;當θ ≦ 21o時,體平均滾轉比大為提升到大於0.135,並隨著θ減小而增大。所以,θ在19o∼21o是較佳的選擇。當θ < 19o時,在閥的安排上有困難(小於此角度時,進、排氣閥有干涉的危險),所以不予考慮。又因為滾轉比大於某些數值之後,所衍生的紊流與擴散增強對於燃燒的增強效應將趨近於飽和,其臨界滾轉比需由實驗獲得,所以進氣閥入射角不需太小。所以,最恰當的進氣閥入射角可使用實驗方法在19o與21o之間取得。


The in-cylinder flows in the axial planes of a motored two-valve, single-cylinder, four-stroke engine during the intake and compression strokes at engine speeds of 1800 RPM and 4000 RPM are diagnosed by using computational methods. Moderate and intense tumble motions are generated by changing the inclination angle (θ) of inlet valve from 19o to 24o. The computations are carried out by the computational fluid dynamic software CONVERGE. The ensemble averaged conservation equations for mass, momentum, and energy in transient state conditions with the k-ε turbulence model are solved. The orthogonal, structured grid which reproduces the geometry of the inlet port, exhaust port, combustion chamber, and real fluid system is automatically generated by CONVERGE. Quantified strengths of the rotating motions in the axial planes are presented by dimensionless tumble ratio, which is defined as the ratio of mean angular velocity of the vortices in the target plane at a certain crank angle to the average angular velocity of the crank. The quantitative results of cycle-averaged tumble ratio indicate the correlation between strengths of tumble motion and inclination angle of inlet valve. The volumetric efficiency, instantaneous in-cylinder flow patterns, and cycle-averaged tumble ratio are considered to optimize θ. The results shows that the instantaneous flow patterns at θ ≧ 22o are not as coherent as those at θ ≦ 21o and therefore the cycle-averaged tumble ratios at θ ≧ 22o present small values than those at θ ≦ 21o. The optimized design for the inclination angle θ would be within the range of 19oand 21o.

目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 viii 表圖索引 xi 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的與方法 7 第二章 標的引擎規格 8 2.1 幾合構造 8 2.2 尺寸 9 第三章 計算方法 10 3.1 計算流力軟體簡介 10 3.2 統御方程式 12 3.2.1 紊流模式 13 3.3 邊界條件與初始條件 16 3.3.1 邊界條件 16 3.3.2 初始條件 17 3.4 數值模擬 18 3.4.1 計算網格建立 18 3.4.2 離散化方程式 19 3.4.3 PISO解法理論 21 3.4.4 網格獨立性 26 3.4.5 收斂標準 27 第四章 分析參數定義 28 4.1 物理參數 28 4.2 量化模式 33 第五章 低轉速下缸內氣流滾轉運動計算結果 35 5.1 進氣閥19O之缸內氣流衍化過程 35 5.1.1 非對稱面(#3, y/D = -0.2) 35 5.1.2 對稱面(#7, y/D = 0) 38 5.1.3 非對稱面(#11, y/D = 0.2) 40 5.2 進氣閥20O之缸內氣流衍化過程 42 5.2.1 非對稱面(#3, y/D = -0.2) 42 5.2.2 對稱面(#7, y/D = 0) 45 5.2.3 非對稱面(#11, y/D = 0.2) 47 5.3 進氣閥21O之缸內氣流衍化過程 50 5.3.1 非對稱面(#3, y/D = -0.2) 50 5.3.2 對稱面(#7, y/D = 0) 52 5.3.3 非對稱面(#11, y/D = 0.2) 55 5.4 進氣閥22O之缸內氣流衍化過程 57 5.4.1 非對稱面(#3, y/D = -0.2) 57 5.4.2 對稱面(#7, y/D = 0) 60 5.4.3 非對稱面(#11, y/D = 0.2) 63 5.5 進氣閥23O之缸內氣流衍化過程 65 5.5.1 非對稱面(#3, y/D = -0.2) 65 5.5.2 對稱面(#7, y/D = 0) 68 5.5.3 非對稱面(#11, y/D = 0.2) 70 5.6 進氣閥24O之缸內氣流衍化過程 73 5.6.1 非對稱面(#3, y/D = -0.2) 73 5.6.2 對稱面(#7, y/D = 0) 76 5.6.3 非對稱面(#11, y/D = 0.2) 78 5.7 容積效率及缸內溫度與壓力分析 81 5.7.1 容積效率(ηV) 81 5.7.2 缸內瞬時平均壓力(Pcyl)與溫度(Tcyl) 82 5.8 滾轉比分析 82 5.8.1 面平均渦度滾轉比(TCA) 82 5.8.2 面平均循環渦度滾轉比() 92 5.8.3 體平均渦度滾轉比(TV,CA) 93 5.8.4 體平均循環渦度滾轉比() 94 5.8.5 CONVERGE體平均渦度滾轉比(T’V,CA) 96 5.8.6 CONVERGE體平均循環渦度滾轉比() 97 5.9 討論 97 第六章 高轉速下缸內氣流滾轉運動計算結果 100 6.1 進氣閥19O之缸內氣流衍化過程 100 6.1.1 非對稱面(#3, y/D = -0.2) 100 6.1.2 對稱面(#7, y/D = 0) 103 6.1.3 非對稱面(#11, y/D = 0.2) 105 6.2 進氣閥20O之缸內氣流衍化過程 107 6.2.1 非對稱面(#3, y/D = -0.2) 107 6.2.2 對稱面(#7, y/D = 0) 110 6.2.3 非對稱面(#11, y/D = 0.2) 112 6.3 進氣閥21O之缸內氣流衍化過程 115 6.3.1 非對稱面(#3, y/D = -0.2) 115 6.3.2 對稱面(#7, y/D = 0) 117 6.3.3 非對稱面(#11, y/D = 0.2) 120 6.4 進氣閥22O之缸內氣流衍化過程 123 6.4.1 非對稱面(#3, y/D = -0.2) 123 6.4.2 對稱面(#7, y/D = 0) 125 6.4.3 非對稱面(#11, y/D = 0.2) 128 6.5 進氣閥23O之缸內氣流衍化過程 131 6.5.1 非對稱面(#3, y/D = -0.2) 131 6.5.2 對稱面(#7, y/D = 0) 134 6.5.3 非對稱面(#11, y/D = 0.2) 136 6.6 進氣閥24O之缸內氣流衍化過程 139 6.6.1 非對稱面(#3, y/D = -0.2) 139 6.6.2 對稱面(#7, y/D = 0) 142 6.6.3 非對稱面(#11, y/D = 0.2) 144 6.7 容積效率及缸內壓力與溫度分析 147 6.7.1 容積效率(ηV) 147 6.7.2 缸內瞬時平均壓力(Pcyl)與溫度(Tcyl) 148 6.8 滾轉比分析 148 6.8.1 面平均渦度滾轉比(TCA) 148 6.8.2 面平均循環渦度滾轉比() 157 6.8.3 體平均渦度滾轉比(Tv,CA) 158 6.8.4 體平均循環渦度滾轉比() 159 6.8.5 CONVERGE體平均渦度滾轉比(T’V,CA) 160 6.8.6 CONVERGE體平均循環渦度滾轉比() 161 6.9 討論 162 第七章 計算結果之比較與討論 164 7.1 容積效率 164 7.2 循環渦度滾轉比 165 7.3 討論 166 第八章 結論與建議 168 8.1 結論 168 8.2 建議 169 參考文獻 171

[1] Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
[2] 李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
[3] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
[4] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines-The 1986 Freeman Scholar Lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
[5] Tennekes, H. and Lumley, J. L., A First Course in Turbulence, MIT Press, London, 1972.
[6] Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” Journal of Engines, Vol. 102, 1993, pp. 1081-1092, SAE 930821.
[7] Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” Journal of Engines, Vol. 98, 1989, pp. 2042-203, SAE 892096.
[8] Endres, H., Neuber, H.-J, and Wurms, R. “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines,” Journal of Engines, Vol. 101, 1992, pp. 942-953, SAE 920516.
[9] Omorl, S., Iwachido, K., Motomochi, M., and Hirako, O., “Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve SI Engines,” Journal of Engines Vol. 100, 1991, pp. 729-740, SAE 910477.
[10] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979, pp. 383-400, SAE 790095.
[11] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979. pp. 371-382. Also in SAE Transactions, SAE 790094.
[12] Kihyung, L., Choongsik, B., Kernyong, K., “The Effects of Tumble and Swirl Flows on Flame Propagation in a Four-Valve S.I. Engine,” Applied Thermal Engineering, Vol. 27, 2007, pp. 2122-2130.
[13] Gharakhani, A. and Ghoniem, A. F., “3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston,” Journal of Engines, Vol. 105, 1996, pp. 1627-1639, SAE 9961195.
[14] Richter, M., Axelsson, B., Aldén, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling,” Journal of Fuels and Lubricants, Vol. 108, 1999, pp. 1652-1663, SAE 1999-01-3540.
[15] Zolver, M., Klahr, D., and Torres, A., “An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation,” Journal of Engines, Vol. 111, 2002, pp. 1919-1929, SAE 2002-01-1120.
[16] 張小燕,「一款汽油機的性能提升研究」,CDAJ-China中國用戶論文集,長安汽車工程研究院,重慶(2009).
[17] Surenda, G., Klunal, A., Vamshi, K., Cho, S., “Steady and Transient CFD Approach for Port Optimization,” Journal of Engines, SAE 2008-01-1430.
[18] Rakopoulos, C., Kosmadakis, G., Pariotis, E., “Investigation of Piston Bowl Geometry and Speed Effects in a Motored HSDI Diesel Engine Using a CFD Against a Quasi-Dimensional Model,” Energy Conversion and Management, Vol. 51, 2010, pp. 470-484.
[19] 林岱衛,「不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的PIV診測」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2004).
[20] 楊賀順,「平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2004).
[21] 林冠旭,「增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2006).
[22] 游曜鴻,「內燃機缸內氣流滾轉及旋轉運動最佳化技術」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2011).
[23] 林政諺,「二閥四行程機車引擎瞬間流場與歧管噴油特性的計算與實驗分析」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2012).
[24] Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
[25] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, Vol. 112, SAE 2003-01-0002, pp. 21-28.
[26] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, Vol. 113, SAE 2004-32-0004, pp. 1710-1714.
[27] Kurniawan, W. H., Abdullah, S., Shamsudeen, A., “A Computational Fluid Dynamics Study of Cold-Flow Analysis for Mixture Preparation in a Motored Four-Stroke Direct Injection Engine,” Journal of Applied Science 7, Vol. 19, 2007. pp. 2710-2724.
[28] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Addison Wesley Longman Limited, New York, 1995.

無法下載圖示 全文公開日期 2020/07/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE