簡易檢索 / 詳目顯示

研究生: 江俊明
Jung-Ming Jiang
論文名稱: 考慮流固耦合效應之水平軸風力發電機氣動力特性數值研究
Numerical Study on Aerodynamic Loading of Horizontal-Axis Wind Turbine via a Fluid-Structure Interaction Approach
指導教授: 趙修武
Shiu-Wu Chau
口試委員: 郭真祥
none
鍾年勉
none
黃育熙
Yu-Hsi Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 風力發電機氣動力特性計算流固耦合數值模擬
外文關鍵詞: wind turbine, aerodynamics characteristic, fluid structure interaction, simulation
相關次數: 點閱:489下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究進行三葉2MW水平軸風力發電機在運轉狀態下考慮流固耦合之氣動力特性計算,利用求解不可壓縮流場之連續方程式、動量方程式以及k-紊流模型獲得風機周圍流場以求得風力發電機之氣動力特性。本研究以旋轉座標系統以及滑動網格方法計算風力發電機在額定運轉條件下之氣動力特性,並比較兩種方法之計算誤差,同時以風機監控系統資料中三組不同時間區間之風速、轉速以及節距角作為計算條件,計算風機之發電量做為比對驗證參考。本研究選用五種不同複合纖維材料之密度、抗拉強度以及楊氏係數作為風機葉片材料參數,討論流固耦合效應對氣動力特性的影響。本研究結果顯示旋轉座標運動計算方法之計算誤差比滑動網格運動方法來得大,使用旋轉座標系統方法之計算發電量與監控系統紀錄資料約有5%之誤差。流固耦合計算發電量與不考慮葉片變形的發電量相當接近,本研究所選用楊氏係數範圍內,葉片尖端變形量介於0.2 m至0.8 m之間,因葉片變形量很小,此時發電量計算差異約為2%。


This study investigates the aerodynamic characteristics of a 2MW three-blade horizontal wind turbine in operation condition via flow simulation with taking the fluid-structure interaction into account. The incompressible flow field around wind turbine is obtained by solving the continuity and momentum equations incorporated with a k- turbulence model, and the forces and moments exerted on the wind turbine by wind can be then calculated. Two approaches, i.e. moving reference frame and sliding mesh method are adopted to find their differences in predicting aerodynamic performance, where the measured power is employed to validate the numerical result. Five different fiber reinforced plastic materials for blades under isotropic assumption are used to study their effects on the aerodynamic characteristics. The results suggest that the former method is less accurate than the later one, where the error in power prediction is about 5% for investigated cases. The deformation of blade tip varies from 0.2 m and 0.8 m for the studied materials, while the predicted power gives 2% difference between the wind turbines with flexible and rigid blades, which is mainly due to the small deformation of blades.

符號表 圖目錄 表目錄 第一章 緒論 1-1 前言 1-2 文獻回顧 第二章 數值模型與數值方法 2-1 統御方程式 2-2 紊流模型 2-3 數值離散方法 2-4 雙向流固耦合建立方法 第三章 風力發電機尺寸與計算參數 3-1 標的風機的外型及幾何參數 3-2 標的風機之運轉特性 3-3 計算空間尺寸與邊界條件之設定 3-4 風力發電機葉片幾何與材料性質 第四章 數值計算結果 4-1 網格建立與獨立性分析 4-2 滑動網格計算方法計算Z72風機之氣動力特性 4-3 方位角變化對風機氣動力特性變化之計算 4-4 流場相對運動方法與監控系統之氣動力特性計算 4-5 流固耦合之風機氣動力特性計算結果 第五章 結論與未來工作 5-1 結論 5-2 未來工作 參考文獻

[1] Lauha F., Steve S., Sgruti S. and Limig Q., “Global Wind Report Annual Market Update 2012,” Global Wind Energy Council, 2012.
[2] IEC Standard 61400-1, 3rd “The normal wind profile model (NWP),” Wind turbines – Part 1: Design requirement, International Electrotechnical Commission, 2005.
[3] 曾瑞堂,劉瑞弘,謝昆儒「全球風力機技術發展現況與未來趨勢」,中國工程師學會會刊,第85卷,第04期,第54-68頁,2012。
[4] 黃慶民、蔡國忠、陳世雄、王晟桓、李啟勝,「50kW風力發電機複合材料葉片設計、分析與製作」,中華民國力學學會第三十一屆全國力學會議,9月21,2007。
[5] 陳彥呈,「陣風效應對風力發電機在停機狀態下之氣動力數值模擬研究」,臺灣大學工程科學及海洋工程學系碩士論文,2011。
[6] 李媛,康順,范忠瑤,李杰,「全迎角風力機翼型氣動性數值分析」,太陽能學報,第33卷,第7期,第1106-1111頁,2012。
[7] 李文傑,「運轉狀態下風力發電機之氣動力負荷數值研究」,台灣科技大學機械系碩士論文,2013。
[8] 黃建日,「澎湖中屯風力發電機運轉資料分析與模擬」,國立清華大學碩士論文,2006。
[9] Ming Q., Zhenggui Z., and Jialing Z., “Three-Dimensional Flow Simulation for Horizontal Axis Wind Turbine,” World Non-Grid-Connected Wind Power and Energy Conference, pp.1-5, 2009.
[10] 雷曉梅,「變速變槳距風力發電機組控制」,甘肅科技,第26卷,第2期,第82-84頁,2010。
[11] 馬振基,「前瞻型中小型風機系統研究」,行政院原子能委員會委託研究計畫研究報告,2009。
[12] 吳佩學、紀華偉、張顧耀,「風機氣動力系統的分析與模擬」,行政院原子能委員會委託研究計畫研究報告,2008。
[13] Kong C., Bang J., and Sugiyama Y., “Structural Investigation of Composite Wind Turbine Blade Considering Various Load Cases and Fatigue Life,” Energy, vol.30, pp. 2101-2114, 2005.
[14] “Guideline for the Certification of Wind Turbines,” Germanischer Lloyd, 2010.
[15] Marin J.C., Barroso A., Paris F., and Canas J., “Study of Fatigue Damage in Wind Turbine Blades,” Engineering Failure Analysis, vol. 16, pp. 656-668, 2009.
[16] Abaqus 6.12 User`s Manual, 2012.
[17] STAR-CCM+ Ver. 6.02 User`s Guide, 2012.
[18] “Fully Coupled Fluid-Structure Interaction Analysis of Wind Turbine Rotor Blades,” Abaqus Technology Brief, Dassault Systemes,2012.
[19] Steve S.,“High-Fidelity Fluid-Structure Interaction,”ANSYS ADVANTAGE, vol. VI, pp.14-16, 2012.
[20] Yang L. and Yuhong Li., “A FSI Model for Non-Grid-Connected Wind Turbine Rotor,” World Non-Grid-Connected Wind Power and Energy Conference, pp1-4, 2009.
[21] David M. and Asfaw B.,“A Flexible Turbine Blade for Passive Blade Pitch Control in Wind Turbines,” Power Engineering and Automation Conference, vol. 1, pp.196-199, 2011.
[22] Shuhe W., Liaojun Z. and Yizhi Y.,“Research on Aeroelasticity of Horizontal Axis Wind Turbines by a Fluid-Structure Coupling Numerical Method,” Sustainable Power Generation and Supply, pp.1-7, April 2009.
[23] Robert E., Thierry G. and Raphaele.Herbin, “Finite Volume Method,” Handbooks of Numerical Analysis, vol. 7, pp 713-1020, 2006.
[24] Bardina J.E., Huang P.G. and Coakley T.J., “k- Two-Equation Model” Turbulence Modeling Validation, Testing, and Development, National Aeronautics and Space Administration, April 1997.
[25] ANSYS Fluent 14.5 User`s Guide, 2012.
[26] Patankar S.V. and Spalding D.B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. of Heat and Mass Transfer, Volume 15, Issue 10, pp.1787-1806, October 1972.
[27] HARAKOSAN, “Technical description of the Z72 wind turbine,” 2009.
[28] 牛山泉,「基礎風力能源」,蔡宜澂、林冠緯、林潔、曾雅秀 譯,國立澎湖科技大學,2009。
[29] Politis E.S. and Chaviaropoulos P.K., “Micrositing and classification of wind turbines in complex terrain.” Wind Energy Section Centre of Renewable Energy Sources, 2008.
[30] 林家緯、李盈宏、沈丞佑,「TIS-1風機研究計畫子計畫三」,台電中彰風場風力特性評估與大型風力機組技術研究期末報告,台灣電力股份有限公司,2012。
[31] David H., Mark E.G. and David.M.M., “Composition Ranges for Glass Fibers,” High Strength Glass Fibers, 2006.
[32] Richardson L.F., “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam,” Philosophical Transactions of the Royal Society of London. Series A, vol. 210, pp. 307-357, 1910.
[33] 趙修武、孫仲宏、楊淳宇、江俊明、李文傑,「TIS-1風機研究計畫子計畫二」,台電中彰風場風力特性評估與大型風力機組技術研究期末報告,2012。

QR CODE