簡易檢索 / 詳目顯示

研究生: 趙振源
Chen-Yuan Chao
論文名稱: 結合慣質、變慣質及離合慣質阻尼之斜面滾動式隔震支承雛形系統設計、實作與分析
Design, Implementation and Analysis of the Prototype System of Slope Rolling-Type Seismic Isolators Combined with Inerter, Variable Inerter and Clutch Inerter Damper
指導教授: 許丁友
Ting-Yu Hsu
口試委員: 張家銘
Chia-Ming Chang
汪向榮
Shiang-Jung Wang
陳沛清
Pei-Ching Chen
黃謝恭
Shieh-Kung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 124
中文關鍵詞: 斜面滾動支承被動隔震支承慣質變慣質離合慣質阻尼振動台試驗
外文關鍵詞: slope rolling-type seismic isolators, passive control, inerter, variable inerter, clutching inerter damper, shaking table experiment
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

斜面滾動隔震支承(SRI)有讓上部結構的加速度極值不隨地震強度增加而上升,且無自振頻率,因此不容易與輸入擾動產生共振反應。然而過去的研究發現,當地震的最大地表速度(PGV)較大時,SRI可能會出現超過設計位移並發生碰撞的情況。為了降低SRI在高PGV地震下的位移反應,本研究使用由飛輪、齒輪、齒條、行星齒輪箱所建立之慣質系統,當SRI產生相對運動時,透過慣質產生與相對加速度相關之慣質力,從而達到降低速度及位移反應的作用,而慣質雖然能夠有效的抑制位移反應,但過大的慣質力可能會導致上傳的加速度增加。為了使SRI在PGV大的地震中能夠發揮慣質作用以降低位移反應,且在PGV小的地震中也不會有過多的慣質力影響其上傳加速度,本研究除了慣質機構之外,亦設計了兩種機構,一種是由直線軸承滑塊、直線軸承座、彈簧及圓管所構成的變慣質系統,當變慣質系統旋轉時,直線軸承滑塊因慣性力及彈簧力作用下,能夠於圓管上移動,因而改變慣質的大小。另一種是由單向軸承和飛輪所構成的離合慣質阻尼系統,透過單向軸承之特性來達成單向轉動之效果。本研究主要嘗試將慣質、變慣質、離合慣質阻尼結合SRI,將其想法付諸試驗進行正弦波及地震試驗,驗證其可行性與力學行為。
透過實驗結果表明1. SRI增加慣質後,位移反應下降但上傳加速度增加,與推測相符。2. 慣質機構在0.5Hz及1Hz正弦波下,位移歷時具有對稱性,在2Hz正弦波下位移歷時觀察到發生偏移狀況,推測為齒輪高頻轉動行為,進而影響對稱性。3. ciSRI飛輪發生非預期方向之旋轉,導致與數值模型擬合不佳。未來建議使用較小滾柱摩擦扭矩。4.viSRI試驗中勁度為100N/m之彈簧其在TCU095及TCU129加速度、位移及慣質力最大值比彈簧勁度331N/m之彈簧小。


The study focuses on the use of an inertial system consisting of a flywheel, gears, racks, and a planetary gear mechanism to improve the performance of the slope rolling-type seismic isolators (SRI) system. The SRI system is designed to prevent an increase in the peak acceleration of the upper structure with increasing seismic intensity and to avoid resonance with input disturbances. However, previous research has found that when the peak ground velocity (PGV) of an earthquake is large, the SRI system may experience excessive displacement and collisions.
To reduce the displacement response of the SRI system under high PGV earthquakes, the study introduces an inertial system that generates inertial forces related to relative acceleration when the SRI system undergoes relative motion. This helps reduce velocity and displacement responses. However, it is noted that excessive inertial forces can increase the transmitted acceleration.
To ensure that the SRI system benefits from the inertial effect in high PGV earthquakes without excessive inertial forces affecting the transmitted acceleration in low PGV earthquakes, the study proposes two additional mechanisms. The first mechanism consists of a linear bearing slider, linear bearing seat, spring, and circular tube, which form a variable inertial system. The rotation of the variable inertial system causes the linear bearing slider to move along the circular tube due to the inertial and spring forces, thereby changing the level of inertia. The second mechanism is a clutch inerter damper system composed of a unidirectional bearing and flywheel, which achieves one-way rotation through the characteristics of the unidirectional bearing.
The study aims to combine the inertial system, variable inertial system, and clutch inerter damper system with the SRI system and experimentally validate their feasibility and mechanical behavior through sinusoidal wave and earthquake tests.
The experimental results indicate the following findings:
1. Increasing the inertia of the SRI system reduces displacement response but increases transmitted acceleration, which aligns with the initial speculation.
2. The inertia mechanism exhibits symmetric displacement histories at 0.5Hz and 1Hz sinusoidal waves, while an offset is observed in the displacement history at 2Hz, possibly due to high-frequency vibrations caused by gear rotation affecting the symmetry.
3. Unexpected rotation of the flywheel in the ciSRI configuration resulted in poor fitting with the numerical model. A smaller roller friction torque is recommended for the future.
4. In the viSRI experiment, the stiffness of the spring (100 N/m) exhibited smaller acceleration, displacement, and inertial force magnitudes at TCU095 and TCU129 compared to the spring stiffness of 331 N/m.

摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景及文獻回顧 1 1.2 研究內容 4 第二章 慣質、變慣質及離合慣質結合斜面滾動隔震支承 5 2.1 SRI 基本構造 5 2.1.1 SRI 運動方程式推導 6 2.1.2 SRI模擬方法 12 2.2 慣質系統基本背景及介紹 13 2.2.1 齒輪慣質系統方程式 14 2.2.2 慣質結合斜面滾動隔震支承 15 2.2.3 SRI與慣質系統連接設計 16 2.2.4 慣質系統齒輪設計 17 2.2.5 慣質系統設計 20 2.2.6 變慣質系統設計 21 2.2.7 離合慣質系統設計 24 第三章 振動台輸入資料介紹 26 3.1 正弦波資料 26 3.2 地震資料 27 第四章 試驗模型及振動台試驗 28 4.1 地震模擬振動台 28 4.2 斜面滾動隔震支承(SRI) 29 4.3 試驗慣質機構 29 4.4 量測儀器及佈置 31 4.5 試驗流程 32 4.6 試驗資料處理 32 4.7 試驗結果與討論 33 4.7.1 SRI試驗結果與數值模擬 33 4.7.1.1 SRI斜面角度影響 33 4.7.1.2 正弦波試驗 36 4.7.1.3 地震試驗 38 4.7.2 iSRI試驗結果與數值模擬 40 4.7.2.1 正弦波試驗 40 4.7.2.2 地震試驗結果與數值模擬 44 4.7.3 單邊ciSRI飛輪正弦波試驗結果與數值模擬 49 4.7.4 ciSRI試驗結果與數值模擬 51 4.7.4.1 正弦波試驗 51 4.7.4.2 地震試驗結果與數值模擬 54 4.7.4.3 ciSRI數值模型討論 56 4.7.5 viSRI 正弦波試驗結果與數值模擬 58 4.7.5.1 正弦波試驗結果 58 4.7.5.2 地震試驗 59 4.7.5.3 viSRI數值模型討論 64 4.7.6 數值模型討論 64 4.7.7 試驗問題 67 第五章 試驗比較 69 5.1 正弦波試驗下相同頻率下不同振幅 69 5.2 正弦波試驗下相同振幅下不同頻率 71 5.3 iSRI不同慣質比之影響 73 5.3.1 正弦波試驗 73 5.3.2 地震試驗 75 5.4 viSRI不同彈簧勁度之影響 77 5.4.1 正弦波試驗 77 5.4.2 地震試驗 80 5.5 正弦波試驗下SRI機構與其他機構比較 82 5.6 試驗下iSRI與ciSRI相同慣質比機構比較 83 5.6.1 正弦波試驗 83 5.6.2 地震試驗 86 第六章 結論與未來研究方向 89 6.1 結論 89 6.2 建議 90 6.3 未來研究方向 90 參考文獻 91 附錄A 93 附錄B 96 附錄C 100 附錄D 104

[1] 內政部營建署, "建築物耐震設計規範及解說," 民國一百一十一年十月.
[2] Y.-l. Zheng and L.-y. Li, "Experimental study and numerical simulation of inerter-based systems," Journal of Vibration and Control, vol. 29, no. 5-6, pp. 985-997, 2022, doi: 10.1177/10775463211057354.
[3] X. L. Q. Zhou, Q. Wang, D. Feng, Q. J. E. e. Yao, and s. dynamics, "Dynamic analysis on structures base‐isolated by a ball system with restoring property," vol. 27, no. 8, pp. 773-791, 1998.
[4] S.-J. Wang et al., "Sloped multi-roller isolation devices for seismic protection of equipment and facilities," Earthquake Engineering and Structural Dynamics, vol. 43, no. 10, pp. 1443-1461, 2014, doi: 10.1002/eqe.2404.
[5] M. H. Tsai, S. Y. Wu, K. C. Chang, and G. C. Lee, "Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings," (in English), Engineering Structures, vol. 29, no. 5, pp. 694-702, May 2007, doi: 10.1016/j.engstruct.2006.05.025.
[6] 許志隆, "斜面式滾動隔震支承之地震力位移反應探討," 碩士, 營建工程系, 國立臺灣科技大學, 2015. [Online]. Available: https://hdl.handle.net/11296/2t9zt9
[7] S. J. Wang, C. H. Yu, C. Y. Cho, and J. S. Hwang, "Effects of design and seismic parameters on horizontal displacement responses of sloped rolling‐type seismic isolators," Structural Control and Health Monitoring, vol. 26, no. 5, 2019, doi: 10.1002/stc.2342.
[8] S. J. Wang, C. H. Yu, W. C. Lin, J. S. Hwang, and K. C. Chang, "A generalized analytical model for sloped rolling-type seismic isolators," (in English), Engineering Structures, vol. 138, pp. 434-446, May 1 2017, doi: 10.1016/j.engstruct.2016.12.027.
[9] 洪家翔, "斜面式滾動隔震支承之分析模型建立與驗證," 碩士, 營建工程系, 國立臺灣科技大學, 2013. [Online]. Available: https://hdl.handle.net/11296/7zpj23
[10] 王耀萱, "斜面式滾動隔震支承之位移反應分析探討," 碩士, 營建工程系, 國立臺灣科技大學, 2014. [Online]. Available: https://hdl.handle.net/11296/8uak44
[11] 黃治華, "強震預警技術應用於半主動斜面式滾動支承之研究," 碩士, 營建工程系, 國立臺灣科技大學, 2019. [Online]. Available: https://hdl.handle.net/11296/xrm3wf
[12] 戴珮珊, "利用震波最大速度推估值決定半主動斜面式滾動隔震支承阻尼力之研究," 碩士, 營建工程系, 國立臺灣科技大學, 2020. [Online]. Available: https://hdl.handle.net/11296/j7t8n5
[13] S.-J. Wang, C.-H. Yu, C.-Y. Cho, and J.-S. Hwang, "Effects of design and seismic parameters on horizontal displacement responses of sloped rolling-type seismic isolators," Structural Control and Health Monitoring, vol. 26, no. 5, 2019, doi: 10.1002/stc.2342.
[14] P.-C. Chen and S.-J. Wang, "Improved control performance of sloped rolling-type isolation devices using embedded electromagnets," Structural Control and Health Monitoring, vol. 24, no. 1, 2017, doi: 10.1002/stc.1853.
[15] M. C. Smith, "Synthesis of mechanical networks: the inerter," vol. 47, no. 10, pp. 1648-1662, 2002.
[16] 林子婷, "雙向具慣質電磁式調諧質量阻尼器之最佳設計與振動台試驗," 碩士, 土木工程學系所, 國立中興大學, 2018.
[17] 李政庭, "結合慣質之斜面滾動式隔震支承研發," 碩士, 營建工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/fkxsc7
[18] 賴以安, "由斜面滾動隔震支承平面耦合探討至結合慣質設計之分析試驗研究," 碩士, 營建工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/tr94jr
[19] N. Makris and G. Kampas, "Seismic protection of structures with supplemental rotational inertia," Journal of Engineering Mechanics, vol. 142, no. 11, 2016, doi: 10.1061/(ASCE)EM.1943-7889.0001152.
[20] M. Wang and F. Sun, "Displacement reduction effect and simplified evaluation method for SDOF systems using a clutching inerter damper," Earthquake Engineering & Structural Dynamics, vol. 47, no. 7, pp. 1651-1672, 2018, doi: 10.1002/eqe.3034.
[21] K. Ikago, K. Saito, N. J. E. E. Inoue, and S. Dynamics, "Seismic control of single‐degree‐of‐freedom structure using tuned viscous mass damper," vol. 41, no. 3, pp. 453-474, 2012.
[22] X. Liu, J. Z. Jiang, B. Titurus, A. J. M. S. Harrison, and S. Processing, "Model identification methodology for fluid-based inerters," vol. 106, pp. 479-494, 2018.
[23] Z. Ge and W. Wang, "Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter," Shock and Vibration, vol. 2018, pp. 1-12, 2018, doi: 10.1155/2018/2631539.
[24] J. Wang, C. Zhang, and Z. Liu, "Clutching inerters enhanced tuned mass dampers for structural response mitigation under impulsive and seismic excitations," Structural Control and Health Monitoring, vol. 29, no. 2, 2021, doi: 10.1002/stc.2881.

無法下載圖示 全文公開日期 2025/08/28 (校內網路)
全文公開日期 2025/08/28 (校外網路)
全文公開日期 2025/08/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE