簡易檢索 / 詳目顯示

研究生: 熊子賢
Tzu-Hsien Hsiung
論文名稱: 駕駛人行為與車道維持系統之互動探討
The Study on Interactions Between the Driver and the Lane Keeping Assist System
指導教授: 陳亮光
Liang-Kuang Chen
口試委員: 林紀穎
Chi-Ying Lin
張以全
I-Tsyuen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 駕駛人行為駕駛人模型車道維持系統駕駛模擬器
外文關鍵詞: Driver Behavior, Driver Model, Lane Keeping Assist System, Driving Simulator
相關次數: 點閱:245下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

車道維持輔助系統 (LKA, Lane Keeping Assist System) 是先進駕駛輔助系統 (ADAS, Advanced Driver Assistance Systems) 中非常重要的系統之一,它通過主動轉向輔助之介入過程,防止車輛偏離車道,與被動式輔助系統相比,此類型的主動式輔助系統之功能會直接干預駕駛人的操控,駕駛人因主動式輔助系統的存在導致的行為變化,成為非常重要的車輛安全議題。本研究將駕駛人與LKA系統之互動關係作為探討的主軸,針對駕駛人受到 LKA 系統干預時的行為變化作為研究目的,利用適應性模型預測控制法 (APC, Adaptive Predictive Control) 將駕駛人行為進行建模,結合駕駛人的預視時間,將模型中對誤差的權重提出新的假設與方法,並以此量化有無受到系統干預之駕駛人行為的差異。
本研究建立駕駛在環即時模擬器作為研究與實驗平台,由 MATLAB/Simulink 搭建車輛動態模型,結合RoadRunner 建構模擬場景與 Unreal Engine 遊戲引擎渲染模擬環境,模擬真實開車之情境與環境;同時設計並實現LKA系統於模擬器中,除了對系統介入策略的車道偏離時間進行演算法驗證,並依據ISO11270測試規範對LKA系統進行功能性驗證。
最後透過駕駛模擬器實驗,將受試者實驗數據進行建模,並將實驗結果進行個體與群體統計分析,觀察到部分駕駛人有無受到LKA系統干預的實驗結果,預視時間內的權重參數呈現顯著差異,群體統計顯示駕駛人更重視車輛偏航角誤差且同樣呈現顯著差異。實驗結論證明本研究提出之駕駛人模型中,預視時間內的權重變化可量化駕駛人受到系統干預的行為差異,同時可針對不同駕駛人行為進行建模並作量化與統計分析。


Lane Keeping Assist System (LKA) is one of the most important systems in Advanced Driver Assistance Systems (ADAS). Compared with the passive assistance system, the function of this type of active assistance system will directly interfere with the driver's control, and the driver's behavior change caused by the existence of the active assistance system has become a very important vehicle safety issue. This study takes the interaction between the driver and the LKA system as the main axis of the discussion, and aims at the behavior change of the driver when the LKA system is intervened. Modeling driver behavior using Adaptive Model Predictive Control (APC), combined with the driver's preview time, puts forward new assumptions and methods for the weight of errors in the model, and quantifies the difference in driver behavior with or without system intervention.
In this study, a real-time driving-in-the-loop simulator is established as a research and experimental platform. The vehicle dynamic model is built by MATLAB/Simulink, and the simulation scene is constructed by combining the RoadRunner and the Unreal Engine game engine to render the simulation environment to simulate the real driving situation and environment. The LKA system is used in the simulator, in addition to the algorithm verification of the time to lane crossing (TLC) of the system intervention strategy, and the functional verification of the LKA system according to the ISO11270 test specification.
Finally, through the driving simulator experiment, the experimental data of the subjects is modeled, and the experimental results are analyzed by individual and group statistics. It is observed whether some drivers are intervened by the LKA system. The weight parameters in the preview time are presented. Significant differences, group statistics show that drivers pay more attention to vehicle yaw angle error and also show significant differences. The experimental conclusion proves that in the driver model proposed in this study, the weight change in the preview time can quantify the difference in the driver's behavior under the system intervention, and at the same time, it can model and quantify and statistically analyze the behavior of different drivers.

摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 前言與動機 1 1.2 文獻回顧 3 1.2.1 車道維持輔助系統 3 1.2.2 駕駛人行為 6 1.3 文獻總結 8 1.4 工作項目 8 第二章 駕駛模擬器 9 2.1 駕駛在環即時模擬器 9 2.2 駕駛模擬環境建立 11 2.2.1 虛幻引擎 Unreal Engine 12 2.2.2 RoadRunner 14 第三章 車輛模型與駕駛人模型 15 3.1 車輛動力學模型 15 3.1.1 車輛模型參數驗證 17 3.2 駕駛人模型設計 19 3.2.1 APC駕駛人模型 19 3.2.2 Model Predictive Control Toolbox 24 3.3 APC駕駛人模型之參數驗證 28 3.3.1 權重函數遞減區間寬度之驗證 30 3.3.2 權重函數前端區間遞增之驗證 31 第四章 車道維持系統 34 4.1 車道維持系統之介入策略 36 4.1.1 車道偏離時間與介入策略流程 36 4.1.2 車道偏離時間之驗證 41 4.2 車道維持系統之控制策略 44 4.2.1 控制方法 44 4.3 車道維持系統之功能驗證 46 4.3.1 直線道路驗證 46 4.3.2 彎曲道路驗證 48 第五章 實驗與模擬結果分析 49 5.1 實驗規劃 49 5.1.1 實驗道路設計 49 5.1.2 實驗情境設計與流程規劃 50 5.2 APC駕駛人模型模擬與實驗結果比對 52 5.2.1 LKA系統關閉之比對結果 54 5.2.2 LKA系統開啟之比對結果 57 5.3 APC駕駛人模型模擬數據之分析 60 5.3.1 受試者個體實驗數據分析 60 5.3.2 受試者群體實驗數據分析 62 5.4 結果討論 62 第六章 結論與未來展望 64 6.1 研究總結 64 6.2 未來展望 64 參考文獻 66 附錄A 72 羅技方向盤 72 附錄B 74 駕駛模擬器之側風情境實現 74 附錄C 76 直線道路DLC計算 76 彎曲道路DLC計算 77

[1] SAE International. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Available: https://www.sae.org/standards/content/j3016_201806/
[2] Brookhuis, K. A., De Waard, D. and Janssen, W. H. (2001). Behavioural impacts of advanced driver assistance systems–an overview. European Journal of Transport Infrastructure Research, vol. 1, no. 3.
[3] Lindgren, A. and Chen, F. (2006). State of the Art Analysis: An Overview of Advanced Driver Assistance Systems (ADAS) and Possible Human Factors Issues.
[4] Nat. Highway Traffic Safety Administration. (2021). NHTSA Orders Crash Reporting for Vehicles Equipped with Advanced Driver Assistance Systems and Automated Driving Systems. Available: https://www.nhtsa.gov/press-releases/nhtsa-orders-crash-reporting-vehicles-equipped-advanced-driver-assistance-systems
[5] Federal Highway Administration (FHWA). Roadway Departure Safety. Available: https://safety.fhwa.dot.gov/roadway_dept/
[6] Liu, C. and Ye, T. J. (2011). Run-off-road crashes: an on-scene perspective. Nat. Highway Traffic Safety Administration.
[7] Malong, K., Wilmink, I., Noecker, G., Roßrucker, K., Galbas, R. and Alkim, T. (2008). Final Report and Integration of Results and Perspectives for market introduction of IVSS. Netherland’s Organization for Applied Scientific Research: Delft, The Netherlands.
[8] Godthelp, H., Milgram, P. and Blaauw, G. J. (1984). The development of a time-related measure to describe driving strategy. Human factors, vol. 26, no. 3, pp. 257-268.
[9] 連毅樫(2008)。適應駕駛人之車道偏離警示系統。國立臺灣科技大學機械工程系碩士,台北市。
[10] Deram, P. (2004). Vehicle based detection of inattentive driving for integration in an Adaptive Lane Departure Warning System.
[11] Mammar, S., Glaser, S. and Netto, M. (2006). Time to line crossing for lane departure avoidance: a theoretical study and an experimental setting. IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 2, pp. 226-241. DOI: 10.1109/TITS.2006.874707
[12] Marino, R., Scalzi, S. and Netto, M. (2011). Nested PID steering control for lane keeping in autonomous vehicles. Control Engineering Practice, vol. 19, no. 12, pp. 1459-1467. DOI: 10.1016/j.conengprac.2011.08.005
[13] Kim, J., Lee, S. M., Shin, S. K. and Jeong, S. H. (2013). Development of Active Lane Keeping Assist System. presented at the NO. 2013-01-0718. SAE Technical Paper DOI: 10.4271/2013-01-0718
[14] Törő, O., Bécsi, T. and Aradi, S. (2016). Design of Lane Keeping Algorithm of Autonomous Vehicle. Periodica Polytechnica Transportation Engineering, vol. 44, no. 1, pp. 60-68. DOI: 10.3311/PPtr.8177
[15] Diab, M. K., Ammar, H. H. and Shalaby, R. E. (2020). Self-Driving Car Lane-keeping Assist using PID and Pure Pursuit Control. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), pp. 1-6. DOI: 10.1109/3ICT51146.2020.9311987
[16] Mouri, H. and Furusho, H. (1997). Automatic path tracking using linear quadratic control theory. Proceedings of Conference on Intelligent Transportation Systems, pp. 948-953. DOI: 10.1109/ITSC.1997.660601
[17] Kamat, S. (2019). Lane Keeping of Vehicle Using Model Predictive Control. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp. 1-6. DOI: 10.1109/I2CT45611.2019.9033958
[18] Wilkerson, J.(2020)。Handoff of Advanced Driver Assistance Systems (ADAS) using a Driver-in-the-Loop Simulator and Model Predictive Control (MPC)。The Ohio State University
[19] Liang, Y., Yin, Z. and Nie, L. (2021). Shared Steering Control for Lane Keeping and Obstacle Avoidance Based on Multi-Objective MPC. vol. 21, no. 14, p. 4671.
[20] Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E. and Hrovat, D. (2007). Predictive Active Steering Control for Autonomous Vehicle Systems. IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 566-580. DOI: 10.1109/TCST.2007.894653
[21] Chen, B., Luan, B. and Lee, K. (2014). Design of lane keeping system using adaptive model predictive control. 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 922-926. DOI: 10.1109/CoASE.2014.6899436
[22] Sentouh, C., Soualmi, B., Popieul, J. and Debernard, S. (2013). Cooperative Steering Assist Control System. 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 941-946. DOI: 10.1109/SMC.2013.165
[23] Nguyen, A., Sentouh, C. and Popieul, J. (2018). Sensor Reduction for Driver-Automation Shared Steering Control via an Adaptive Authority Allocation Strategy. IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 5-16. DOI: 10.1109/TMECH.2017.2698216
[24] Benloucif, M. A., Sentouh, C., Floris, J., Simon, P. and Popieul, J. C. (2019). Online adaptation of the Level of Haptic Authority in a lane keeping system considering the driver’s state. Transportation Research Part F: Traffic Psychology and Behaviour, vol. 61, pp. 107-119. DOI: 10.1016/j.trf.2017.08.013
[25] Sentouh, C., Nguyen, A., Benloucif, M. A. and Popieul, J. (2019). Driver-Automation Cooperation Oriented Approach for Shared Control of Lane Keeping Assist Systems. IEEE Transactions on Control Systems Technology, vol. 27, no. 5, pp. 1962-1978. DOI: 10.1109/TCST.2018.2842211
[26] Sentouh, C., Nguyen, A., Floris, J. and Popieul, J. (2018). Multiple Controller Switching Concept for Human-Machine Shared Control of Lane Keeping Assist Systems. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2730-2735. DOI: 10.1109/SMC.2018.00466
[27] Eichelberger, A. H. and McCartt, A. T. (2016). Toyota drivers' experiences with Dynamic Radar Cruise Control, Pre-Collision System, and Lane-Keeping Assist. Journal of Safety Research, vol. 56, pp. 67-73. DOI: 10.1016/j.jsr.2015.12.002
[28] Salvati, L., d’Amore, M., Fiorentino, A., Pellegrino, A., Sena, P. and Villecco, F. (2020). Development and Testing of a Methodology for the Assessment of Acceptability of LKA Systems. vol. 8, no. 3, p. 47.
[29] Takada, Y., Boer, E. R. and Sawaragi, T. (2017). Driver assist system for human–machine interaction. Cognition, Technology & Work, vol. 19, no. 4, pp. 819-836. DOI: 10.1007/s10111-017-0439-x
[30] Zhong, B., Chen, H., Chen, J., Lan, X., Liu, Q., Nishimura, Y. and Ando, K. (2018). Study on important indices related to driver feelings for LKA intervention process. SAE Technical Paper 0148-7191.
[31] Maag, C., Muhlbacher, D., Mark, C. and Kruger, H. (2012). Studying Effects of Advanced Driver Assistance Systems (ADAS) on Individual and Group Level Using Multi-Driver Simulation. IEEE Intelligent Transportation Systems Magazine, vol. 4, no. 3, pp. 45-54. DOI: 10.1109/MITS.2012.2203231
[32] Fricke, N., Griesche, S., Schieben, A., Hesse, T. and Baumann, M. (2015). Driver behavior following an automatic steering intervention. Accident Analysis & Prevention, vol. 83, pp. 190-196. DOI: 10.1016/j.aap.2015.07.018
[33] Sullivan, J. M., Flannagan, M. J., Pradhan, A. K. and Bao, S. (2016). Literature review of behavioral adaptations to advanced driver assistance systems.
[34] Rudin-Brown, C. M. and Noy, Y. I. (2002). Investigation of Behavioral Adaptation to Lane Departure Warnings. vol. 1803, no. 1, pp. 30-37. DOI: 10.3141/1803-05
[35] Martens, M. H. and Jenssen, G. D. (2012). Behavioral Adaptation and Acceptance. Handbook of Intelligent Vehicles, A. Eskandarian, Ed. London: Springer London, pp. 117-138. DOI: 10.1007/978-0-85729-085-4_6
[36] Bianchi Piccinini, G. F., Rodrigues, C. M., Leitão, M. and Simões, A. (2014). Driver's behavioral adaptation to Adaptive Cruise Control (ACC): The case of speed and time headway. Journal of Safety Research, vol. 49, pp. 77.e1-84. DOI: 10.1016/j.jsr.2014.02.010
[37] Reinmueller, K., Kiesel, A. and Steinhauser, M. (2020). Adverse Behavioral Adaptation to Adaptive Forward Collision Warning Systems: An Investigation of Primary and Secondary Task Performance. Accident Analysis & Prevention, vol. 146, p. 105718. DOI: 10.1016/j.aap.2020.105718
[38] Mas, A., Merienne, F. and Kemeny, A. (2011). Lateral control assistance and driver behavior in emergency situations. 3rd International Conference on Road Safety and Simulation, pp. 1-12.
[39] McRuer, D. T. (1965). Human pilot dynamics in compensatory systems-theory, models, and experiments with controlled element and forcing function variations. AFFDL-TR-65-15.
[40] McRuer, D. T. and Krendel, E. S. (1957). Dynamic response of human operators. KELSEY-HAYES CO INGLEWOOD CA CONTROL SPECIALISTS DIV.
[41] McRuer, D. (1980). Human dynamics in man-machine systems. Automatica, vol. 16, no. 3, pp. 237-253. DOI: 10.1016/0005-1098(80)90034-5
[42] Schnelle, S., Wang, J., Su, H. and Jagacinski, R. (2017). A Driver Steering Model With Personalized Desired Path Generation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 111-120. DOI: 10.1109/TSMC.2016.2529582
[43] Schnelle, S., Wang, J., Su, H. J. and Jagacinski, R. (2017). A Personalizable Driver Steering Model Capable of Predicting Driver Behaviors in Vehicle Collision Avoidance Maneuvers. IEEE Transactions on Human-Machine Systems, vol. 47, no. 5, pp. 625-635. DOI: 10.1109/THMS.2016.2608930
[44] Schnelle, S., Wang, J., Jagacinski, R. and Su, H.-j. (2018). A feedforward and feedback integrated lateral and longitudinal driver model for personalized advanced driver assistance systems. Mechatronics, vol. 50, pp. 177-188. DOI: 10.1016/j.mechatronics.2018.02.007
[45] Lan, X., Chen, H., He, X., Chen, J., Nishimura, Y., Ando, K. and Kitahara, K. (2017). Driver Lane Keeping Characteristic Indices for Personalized Lane Keeping Assistance System. SAE Technical Paper 0148-7191.
[46] Pilutti, T. and Ulsoy, A. G. (1999). Identification of driver state for lane-keeping tasks. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 29, no. 5, pp. 486-502. DOI: 10.1109/3468.784175
[47] Chen, L.-K. and Ulsoy, A. G. (2001). Identification of a Driver Steering Model, and Model Uncertainty, From Driving Simulator Data. Journal of Dynamic Systems, Measurement, and Control, vol. 123, no. 4, pp. 623-629. DOI: 10.1115/1.1409554
[48] Soma, H. and Hiramatsu, K. (1995). Dynamic identification of driver-vehicle system using AR-method. Vehicle System Dynamics, vol. 24, no. 4-5, pp. 263-282.
[49] Chen, L.-K. and Ulsoy, A. G. (2006). Experimental evaluation of a vehicle steering assist controller using a driving simulator. Vehicle System Dynamics, vol. 44, no. 3, pp. 223-245.
[50] Chen, L.-K. and Peng, M.-H. (2007). Validity evaluations of on-line driver modeling and state assessment. ASME International Mechanical Engineering Congress and Exposition, vol. 43033, pp. 151-157.
[51] Ungoren, A. Y. and Peng, H. (2005). An adaptive lateral preview driver model. Vehicle System Dynamics, vol. 43, no. 4, pp. 245-259. DOI: 10.1080/00423110412331290419
[52] MacAdam, C. C. (1980). An optimal preview control for linear systems.
[53] 陳俊戎(2010)。適應性模型預估控制法之駕駛人模型實驗驗證。國立臺灣科技大學機械工程系碩士,台北市。
[54] Deng, Z., Chu, D., Wu, C., Liu, S., Sun, C., Liu, T. and Cao, D. (2020). A Probabilistic Model for Driving-Style-Recognition-Enabled Driver Steering Behaviors. IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1-14. DOI: 10.1109/TSMC.2020.3037229
[55] MathWorks. How Unreal Engine Simulation for Automated Driving Works. Available: https://ww2.mathworks.cn/help/driving/ug/how-3d-simulation-for-automated-driving-works.html
[56] Camacho, E. F. and Alba, C. B., Model predictive control. Springer science & business media, 2013
[57] Wikipedia contributors. Model predictive control. Available: https://en.wikipedia.org/w/index.php?title=Model_predictive_control&oldid=1051569184
[58] 謝博鈞(2008)。車道維持控制器與駕駛人衝突協調之探討。國立臺灣科技大學機械工程系碩士,台北市。
[59] 古昆隴. (2017). 車道維持輔助開發技術介紹 [Internet]. Available: https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=3165
[60] Oh, S.-W., Chae, H.-C., Yun, S.-C. and Han, C.-S. (2004). The Design of a Controller for the Steer-by-Wire System. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 47, no. 3, pp. 896-907. DOI: 10.1299/jsmec.47.896
[61] MathWorks. Lane Keeping Assist System. Available: https://ww2.mathworks.cn/help/mpc/ref/lanekeepingassistsystem.html

QR CODE