簡易檢索 / 詳目顯示

研究生: 曾聖傑
Sheng-chieh Tseng
論文名稱: 絕緣層上覆矽光波導色散與雙折射效應之研究
Birefringence and Dispersion of Silicon-on-insulator Waveguide using Optical Low-coherence Interferometry
指導教授: 徐世祥
Shih-hsiang Hsu
口試委員: 李三良
San-liang Lee
劉政光
Cheng-kuang Liu
廖顯奎
Shian-kuei Liaw
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 低同調干涉雙折射效應色散
外文關鍵詞: optical low-coherence interferometer, birefringence, dispersion
相關次數: 點閱:323下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽光電為發展積體微波光電裡最熱門的一環其最主要的優勢在於它與目前已發展成熟的互補金屬氧化半導體製程相容,由於它矽層與氧化層折射率的高差異性,可以有效地將光侷限在極小的波導裡。現今,新的訊息傳輸著重在提高光通訊系統的效率與無線存取網路,調變訊息的方法與光的相位息息相關,這正意味著雙折射的重要性。然而,色散也是另一個造成訊號失真的原因。在本篇論文裡,我們將由實驗表現出絕緣層上覆矽光波導的雙折射效應與色散值之特性。

    在各種量測雙折射特性的方法中,低同調干涉技術擁有較高的解析度10-5,這與待測元件的長度與以高同調雷射光源產生的光學尺的解析有關。高度5m、寬度5m和蝕刻深度2.5m的絕緣層上覆矽光波導雙折射值為7.9x10-4;另一種利用陣列波導光柵量測雙折射的實驗方法得到的值為4.7x10-4。

    飛行時間法(TOF)、調制相位偏移法(MPS)和干涉法是目前最主要量測色散值的三種技術。相較於在工業界最常被使用的飛行時間法與調制相位偏移法而言,干涉法是比較廉價且有效的測量方式。在先前已量測雙折射效應的同樣幾何形狀的光波導上,無論是干涉儀的兩臂光程差是否相同,所得到的色散值約為-900 ps/(nm km)。

    我們成功地利用干涉技術去驗證5m厚的絕緣層上覆矽光波導之雙折射與色散值,我們的最終目標是發展一個穩定性高且精確度高的方法同時觀測到光學系統的性質。


    A silicon-on-insulator (SOI) platform with the big advantage of the mature complementary metal-oxide-semiconductor (CMOS) compatible processing has been well developed to be a highly integrated microphonics due to its large refractive-index difference between silicon and silicon dioxide layers. Currently, new modulation formats are being proposed to enhance the performance and spectral efficiency of optical communication systems in core, metro, and access networks. The formats are mainly the optical phase related technologies, which imply the importance of birefringence. However, the chromatic dispersion is another important factor for the signal distortion. In this thesis, the methodology to characterize the birefringence and chromatic dispersion on SOI waveguides will be experimentally demonstrated.

    Among a variety of birefringence characteristics, the optical low-coherence interferometer (OLCI) illustrates a higher resolution, 10-6, which is related to the device length and optical ruler generated by the high-coherence laser source. The birefringence of the SOI waveguides with the thickness of 5m, the width of 5m and the etch depth of 2.5m was demonstrated as 7.9x10-4. Another filtering type of array waveguide grating (AWG) was also taken for verification and shown as the similar birefringence of 4.7x10-4.

    Time of flight (TOF), modulation phase shift (MPS) and interferometric methods are three main approaches for chromatic dispersion measurement techniques. Compared with the most widely used commercial dispersion, TOF and MPS, the interferometric technique is a less expensive and effective approach. The SOI waveguides with the same geometrical dimensions in the birefringence testing was showing a high dispersion of around -900 ps/(nm km) from the balanced and unbalanced arms of the interferometer.

    We successfully utilized the interference techniques to demonstrate the birefringence and chromatic dispersion of 5m thick SOI waveguides. Our final goal is to develop a reliable and precise characteristic tool to in-situ monitor the optical system performance.

    目錄 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3 論文架構 3 第二章理論 5 2-1光波導理論 5 2-1-1幾何光學 5 2-1-2波動光學 6 2-2 波導耦合方式 12 2-2-1 直接耦合 12 2-2-2 光柵耦合 12 2-2-3 耦合損耗(Coupling Loss) 13 2-3矽波導的單多模條件 16 2-4 多模干涉器(Multi-Mode Interference, MMI) 21 2-4-1多模波導 21 2-4-2 自我成像原理 21 2-4-3 多模干涉器的干涉機制 24 2-4-4 1x2 MMI模擬與測量結果 28 2-5-低同調干涉技術 30 2-6波導中的色散(Chromatic Dispersion) 37 2-6-1模態間色散(Intermodal Dispersion) 37 2-6-2模內色散(Intramodal Dispersion) 38 2-6-3極化色散(Polarization Modal Dispersion, PMD) 41 第三章 量測的技術與結果 43 3-1 量測矽波導雙折射效應 43 3-2 陣列波導光柵 49 3-3 色散測量的原理與技術 53 3-3-1色散測量的技術 53 3-3-2色散量測結果(平衡) 59 3-3-3色散量測結果(非平衡) 60 第四章 結論與未來展望 62 4-1 結論 62 4-2 未來展望 63 參考文獻 64

    [1] F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sensors and Actuators, B: Chemical, vol. 92, pp. 151-158, 2003.
    [2] Clifford R. Pollock and Michal Lipson, Integrated photonics. Boston: Kluwer Academic Publishers, 2003.
    [3] R.A. Soref, J. Schmidtchen, and K. Petermann, "Large single mode RIB waveguides in GeSi-Si and Si-on-SiO2," IEEE Journal of Selected Topics in Quantum Electronics, 1991.
    [4] Souren P. Pogossian, Lili Vescan and Adrian Vonsovici, "The single-mode condition for semiconductor rib waveguides with large cross section," Journal of Lightwave Technology, vol. 16, pp. 1851-1853, 1998.
    [5] N. Dagli and C.G. Fonstad, "ANALYSIS OF RIB DIELECTRIC WAVEGUIDES," IEEE Journal of Quantum Electronics, vol. QE-21, pp. 315-321, 1985.
    [6] O. Powell, "Single-mode condition for silicon rib waveguides," Journal of Lightwave Technology, vol. 20, pp. 1851-1855, 2002.
    [7] N. S. Kapany and J. J. Burke, Optical Waveguide. New York:Academic, 1972.
    [8] K Takada, Y Inoue, H Yamada and M Horiguchi, "Measurement of phase error distributions in silica-based arrayed-waveguide grating multiplexers by using Fourier transform spectroscopy," Electronics Letters, vol. 30, pp. 1671-1672, 1994.
    [9] G. T. Reed and Andrew P. Knights, "Silicon Photonics An Introduction," John Wiley & Sons, Ltd., 2004.
    [10] K. Takada, H. Yamada and Y. Inoue, "Optical low coherence method for characterizing silica-based arrayed-waveguide grating multiplexers," Journal of Lightwave Technology, vol. 14, pp. 1677-1689, 1996.
    [11] Amnon Yariv and Pochi Yeh, "Photonics."Oxford, 2006.
    [12] M. J. Weber, "Handbook of optical materials," CRC Press, 2003.
    [13] M. Foster, K. Moll, and Alexander Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Optics Express, vol. 12, pp. 2880-2887, 2004.
    [14] Dan Grobnic, Stephen J. Mihailov and Christopher W. Smelser, "High Birefringence Induced in SMF-28 Fiber by Femtosecond IR Laser Exposure of the Cladding with a Phase Mask," OSA, 2007.
    [15] K.Okamoto, ”Fundamentals of Optical Waveguide”, San Diego, Academic Press, 2000.
    [16] Winnie N. Ye,Dan-Xia Xu, Siegfried Janz, Pavel Cheben, Andre Delage, Marie-Josee Picard, N. Garry Tarr and Boris Lamontagne, "Stress-induced birefringence in silicon-on-insulator (SOI) waveguides," in Optoelectronic Integration on Silicon. vol. 5357, pp. 57-66, 2004.
    [17] J. H. Wiesenfeld and J. Stone, “Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers,” J. Lightwave Technol., vol. LT-2, p.464, 1984.
    [18] B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, “ Phase Shift Technique for the measurement of Chromatic Dispersion in Optical Fibers using LED’s”, IEEE Transactions on Microwave Theory and Techniques, vol. 82, Issue 10, p. 1497-1503 1982.
    [19] P. Merrit, R. P. Tatam, and D.A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of Monomode optical fiber,” J. Lightwave Technol. 7, 703-716 1989.
    [20] R Chlebus, P Hlubina, D Ciprian, "Spectral-domain tandem interferometry to measure the group dispersion of optical samples," Optics and Lasers in Engineering, vol. 47, pp. 173-179, 2009.
    [21] J. Y. Lee and D. Y. Kim, "Spectrum-sliced Fourier-domain low-coherence interferometry for measuring the chromatic dispersion of an optical fiber," Applied Optics, vol. 46, pp. 7289-7296, 2007.
    [22] Guy Millot, Alexandre Sauter, John M. Dudley, Laurent Provino and Robert S. Windeler, "Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber," Optics Letters, vol. 27, pp. 695-697, 2002.

    無法下載圖示 全文公開日期 2015/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2015/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE