簡易檢索 / 詳目顯示

研究生: 林志鴻
Chih-Hung Lin
論文名稱: 溫度對筆記型電腦充電器效率之影響評估
The Evaluation of Thermal Impact on Power Efficiency of Laptop PC Charger
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 林景源
Jing-Yuan Lin
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 風扇噪音混合型升壓充電窄電壓直流充電器效率筆記型電腦
外文關鍵詞: fan noise, narrow voltagesdirect current charger, hybrid power boost charger, efficiency, Laptop
相關次數: 點閱:305下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在評估溫度對不同架構的筆記型電腦充電器效率的影響,針對混合型升壓(HPB)充電器與窄電壓直流(NVDC)充電器兩種不同充電器架構在一般室溫與高溫工作環境下的效率反應。經由實驗找出溫度對系統效率的相對關係,透過有效的散熱模組與風扇的設計,力求迅速降低系統所產生的熱量,減少溫度對系統的效能影響,並且改善風扇噪音。


The design of laptop is more and more challenging than before. In this thesis, the focus is to evaluate the charger efficiency of two different battery charger architectures, i.e. hybrid power boost (HPB) charger and narrow voltage direct current (NVDC) charger, between the room temperature and higher ambient temperature in computing system. First, the system impact aroused from temperature is explored by experiments. Then by using proper thermal dissipation solution and fan-cooling design to reduce the heat generation and increase the system efficiency, as well as fan noise suppression.

第一章 緒論 1.1 研究動機 1.2 研究方法與貢獻 1.3 研究大綱 1.4 論文組織架構 第二章 電池特性與系統散熱模組設計 2.1 電池發展與應用 2.1.1 電池電氣特性 2.1.2 電池保護機制 2.2 熱與傳導模式 2.2.1 熱量傳導模式 2.2.1 熱阻 2.3 散熱模組基本架構設計 2.3.1 風扇 2.3.2 散熱片 2.3.3 熱管 2.3.4 傳熱介質 第三章 直流電源轉換基本架構與原理 3.1 電源轉換器架構簡介 3.1.1 轉換效率 3.2 電壓轉換分類與控制方式 3.2.1 線性式電壓轉換 3.2.2 切換式電壓轉換 3.3 直流電壓轉換器 3.3.1 直流分析 3.3.2 導通模式 第四章 混合式升壓充電與窄電壓充電架構與原理 4.1 充電器概要 4.1.1 充電管理機制 4.1.2 切換式充電器的功率損耗 4.1.3 脈波寬度調變 4.2 混合式升壓充電器架構 4.2.1 混合式升壓充電器分析 4.2.2 適用範圍與優劣分析 4.3 窄電壓充電器架構 4.3.1 窄電壓直流充電器分析 4.3.2 適用範圍與優劣分析 第五章 電路實驗與分析 5.1 充電器IC規格說明/電路圖/實作成品 5.1.1 HPB/NVDC Combo測試板 5.1.2 HPB架構主機板 5.1.3 窄電壓直流充電架構主機板 5.2 實驗與結果分析 5.2.1充電器效率與溫度相關性實驗 5.2.1.1 實驗一 充電器本體在不同模式的溫度變化 5.2.1.2 實驗二 25度室溫的充電器效率與損失 5.2.1.3 實驗三 35度環境溫度充電器效率與損失 5.2.1.4 實驗四 HPB與NVDC充電器電池續航力 5.2.2 風扇噪音抑制實驗 5.2.2.1 實驗五 風扇噪音抑制實驗 5.3 實驗結果 第六章 結論與未來展望 6.1 結論 6.2 未來研究方向與展望 參考文獻

[1]Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, 2nd Edition, 2001.

[2]Daniel W. Hart, Introduction to Power Electronics, 1st Edition, 1996.

[3]梁適安,切換式電源供給器之理論與實務設計,台北:全華科技圖書股份有限公司,初版,民國97年。

[4]Liang X.G., Jayakanthan G., Wang M., “Design considerations for narrow Vdc based power delivery architecture in mobile computing system,” Applied Power Electronics Conference and Exposition (APEC), 2010, pp. 794-800.

[5]Ke Y.L., Chuang Y.C. and Chen M.S., “Implementation of High-Efficiency Battery Charger with a Zero-Voltage-Transition Pulse-Width-Modulated Boost Converter,” Industrial & Commercial Power Systems Technical Conference, 2009, pp. 1-9.

[6]Liang X.G., Li P. and Jayakanthan G., “Evaluation of Narrow Vdc-Based Power Delivery Architecture in Mobile Computing System,” Industry Applications, 2011, pp. 2539-2548.

[7]Chen L.R., “A Design of An Optimal Battery Pulse Charge System by Frequency-Varied Technique,” Industrial Electronics, 2006, pp. 398–405.

[8]Charles J., Jassi P., Ananth N.S., Sadat A. and Fedorova A., “Evaluation of The Intel® Core™ i7 Turbo Boost Feature,” Workload Characterization, IISWC, 2009, pp. 188-197.

[9]Pence W. and Krusius J.P., “Package Thermal Resistance: Geometrical Effects in Conventional and Hybrid Packages”, Components, Hybrids, and Manufacturing Technology, 1990, pp. 245-251.

[10]Matsumoto K. and Taira Y., “Thermal Resistance Measurements of Interconnections for the Investigation of the Thermal Resistance of a Three-Dimensional (3D) Chip Stack,” Semiconductor Thermal Measurement and Management Symposium, 2009, pp. 321-328.

[11]Aneiros E., Lobo D., Lopez A. and Alvarez R., “A Proposed Mathematical Model for Discharge Curves of Li-Ion Batteries,” New Concepts in Smart Cities: Fostering Public and Private Alliances (Smart MILE), 2013, pp. 1-6.

[12]丁柏傑,陳藹然,「化學反應原理」,科學Online,國立臺灣大學科學教育發展中心,2011年11月。

[13]IEEE Power and Energy Society, “IEEE Standard for Rechargeable Batteries for Multi-Cell Mobile Computing Devices,” IEEE Std 1625-2008, 2008, pp. 1-79.

[14]Seiko Instruments,「充電電池保護IC的實現原理與發展趨勢」,EET電子工程專輯,2002年8月。

[15]Popova N.; Schaeffer Ch., Avenas Y., Kapelski G. “Fabrication and Thermal Performance of a Thin Flat Heat Pipe with Innovative Sintered Copper Wick Structure”, Industry Applications Conference, 41st IAS Annual Meeting, 2006, pp. 791-796.

[16]Pinjala D., Khan N., Xie Ling., Teo M., Wong E.H., Iyer M.K., Lee C., and Rasiah I.J., “Thermal Design of Heat Spreader and Analysis of Thermal Interface Materials (TIM) for Multi-Chip Package”, Electronic Components and Technology Conference, 2002, pp. 1119-1123.

[17]Chan S.C. and Ho K.L., “Efficient Methods For Computing the Frequency Response of Linear Networks,” Circuits and Systems, 1990, pp. 711-714.

[18]Barry B.C., Hayes J.G. and Rylko M.S., “CCM OpeM and DCration of the Interleaved Two-Phase Boost Converter with Discrete and Coupled Inductors,” Power Electronics, 2015, pp. 6551-6567.

[19]Pinto F.A.V., Costa L.H.M.K. and Dias de Amorini M., “Modeling Spare Capacity Reuse in EV Charging Stations Based on the Li-ion Battery Profile,” Connected Vehicles and Expo (ICCVE), 2014, pp. 92-98.

[20]Maity S., Tripathy D., Bhattacharya T.K. and Banerjee S., “Bifurcation Analysis of PWM-1 Voltage Mode-Controlled Buck Converter Using the Exact Discrete Model,” Circuits and Systems I: Regular Papers,, 2007, pp. 1120-1130.

無法下載圖示 全文公開日期 2021/01/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE