簡易檢索 / 詳目顯示

研究生: 戴志翰
JHIH-HAN DAI
論文名稱: 基於多級式神經網路架構之電池診斷模型與雲端監控平台
Battery Diagnostic Model and Cloud Monitoring Platform Based on a Multi-stage Neural Network Architecture
指導教授: 林長華
Chang-Hua Lin
口試委員: 陳貽評
Yi-Ping Chen
劉華棟
Hwa-Dong Liu
黃仲欽
Jonq-Chin Hwang
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 150
中文關鍵詞: 多級神經網路數位雙生微分容量(dQ/dV)曲線數據產生器雲端系統
外文關鍵詞: Multi-stage Neural Network, Digital Twin, dQ/dV curve, Data Generator, Cloud System
相關次數: 點閱:733下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出一種多級神經網路模型,專為鋰鐵電池設計,目標為解決此電池電壓平坦區的問題,達到準確估測電池電量狀態的功效。該模型能擷取電池非線性特性,並適用於其他鋰系電池,且能運用遷移學習策略,能迅速預測其他鋰系電池狀態,有效節省時間並提升效能。此外,透過結合微分容量(dQ/dV)曲線與所提出的模型,對鋰三元電池健康狀態進行估測,並比較不同模型的電池電量與健康狀態的估測結果。
其次,本文將數位雙生系統結合雲端-邊緣協作的方式,實現鋰系電池的網路化管理和服務,所提的四層網路化架構可突破傳統電池管理系統在計算和儲存方面的限制,以實現更高效的電池管理;同時,完成一個以雙向電能轉換器為基礎的電池數據收集系統之設計,該系統除了能夠收集電池數據外,還能進行特定或動態電流型態的抽載測試,以收集特定或動態的電流抽載數據。這些收集的數據可用於更新和優化所提的數位雙生系統,進一步提高了電池管理的效率和準確性。


This paper proposes a multi-stage neural network model specifically designed for lithium iron batteries with the aim of resolving the nominal voltage zone issue, thus accurately estimating the battery’s state of charge. This model can capture the nonlinear characteristics of batteries and also applicable to other lithium-based batteries. The adoption of transfer learning strategies allows for rapid prediction of the status of other lithium-based batteries, reduce training time and improving efficiency. In addition, by combining the dQ/dV curve with the proposed model, the health status of lithium ternary batteries is estimated, with comparative analyses performed between different models on battery capacity and health status estimation.
Additionally, this paper integrates digital twin system and cloud-edge collaboration to realize networked management and service of lithium-ion batteries. The four-layer network architecture proposed breaks the computational and storage limitations of traditional Battery Management Systems (BMS), achieving more efficient battery management. Simultaneously, a battery data collection system based on a bidirectional power converter is designed. This system not only collects battery data but also carries out specific or dynamic current draw tests to gather particular or dynamic current draw data. The collected data are utilized to update and optimize our digital twin system, further enhancing the efficiency and accuracy of battery management.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.3 論文架構 12 第二章 神經網路模型與特徵處理方法 14 2.1 電池電量狀態及健康狀態 14 2.2 電池數據來源 15 2.2.1 Sanyo UR18650-NSX電池數據 15 2.2.2 PC40155LFP電池數據 16 2.2.3 A123電池數據 17 2.2.4 LFP1865140電池數據 19 2.3 特徵處理方法 19 2.3.1 移動平均法 20 2.3.2 Savizky-Golay濾波器 20 2.3.3 本文所提之微分容量(dQ/dV)曲線特徵處理法 22 2.3.4 微分容量(dQ/dV)曲線實驗結果 24 2.3.5 正規化 25 2.3.6 時間序列特徵 25 2.4 神經網路介紹 26 2.4.2 DAE模型 28 2.4.3 CNN模型 28 2.4.4 LSTM模型 29 2.4.5 TCN模型 30 2.4.6 Transformer模型 32 2.4.7 提出的神經網路架構 33 2.4.8 神經網路訓練方法 38 2.5 遷移學習技術 40 2.5.1 微調策略 41 2.5.2 領域自適應策略 43 第三章 雲端技術介紹 45 3.1 雲端系統架構 45 3.2 雲端設備介紹 48 3.3 Docker容器化技術介紹 49 3.4 資料庫InfluxDB介紹 50 3.5 前端技術介紹 51 3.6 後端技術介紹 54 3.6.1 Flask介紹 55 3.6.2 Node-RED介紹 56 3.6.3 Ngrok介紹 57 3.7 MQTT通訊協議與數據傳輸格式介紹 58 第四章 雲端應用於電池診斷平台 61 4.1 雲端系統架構介紹 61 4.1.1 應用於數據收集之雲端架構 61 4.1.2 應用於電動載具之雲端架構 62 4.1.3 模組化管理之系統架構 66 4.2 電池數據收集平台 67 4.2.2 雙向同步整流降升壓轉換器 68 4.2.3 啟動責任週期控制 69 4.2.4 雙向同步整流降升壓型轉換器工作模式 72 4.2.5 數位控制器之必要性 83 4.2.6 中央管理單元Raspberry Pi 86 4.2.7 FreeRTOS任務分配動作 87 4.2.8 數據收集器之動態負載曲線 89 4.2.9 數據收集系統之動作流程 90 4.3 Modbus通訊協議 92 4.3.1 Modbus之訊息結構與通訊架構 92 4.3.2 通訊之數據校驗程序 93 第五章 電池數據收集器之系統規格與設計考量 95 5.2 電池數據收集之規格 95 5.2.1 數據收集平台取樣回授 95 5.2.2 電動載具電池模組之取樣與實測 97 5.3 雙向同步整流降升壓轉換器之規格與設計考量 99 5.3.2 儲能元件設計 100 5.4 電動機車電池模組之規格與設計考量 102 5.5 輔助電源之應用與說明 106 5.6 高速PWM之驅動電路設計 107 5.7 電流取樣電路之設計與實現 108 第六章 電池狀態估測之實現 110 6.2 數據收集系統 110 6.3 應用於電動車之電池管理系統 111 6.4 多級神經網路模型評估與測試 113 6.4.1 評估方法 113 6.4.2 鋰鐵電池多溫度下SOC估測結果 113 6.4.3 鋰三元電池 SOH估測結果 117 6.4.4 不同廠牌、不同容量之遷移學習結果 119 第七章 結論與未來展望 122 7.2 結論 122 7.3 未來展望 123 參考文獻 124

[1]B. Scrosati, J. Garche, “Lithium batteries: status, prospects and future,” Jounal Power Sources, vol. 195, no. 9, pp. 2419-2430, 2010.
[2]X. Lai, S. Wang, L. He, L. Zhou, Y. Zheng, “A hybrid state-of-charge estimation method based on credible increment for electric vehicle applications with large sensor and model errors,” Jounal Energy Storage, vol. 27 , pp. 101106, 2020.
[3]N. Yang, X. Zhang, G. Li “State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting,” Electrochimica Acta, vol.151, pp. 63-71, 2015.
[4]Y. Zheng, M. Ouyang, X. Han, L. Lu, J. Li, “Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles,” Jounal Power Sources, vol. 377, pp. 161-188, 2018.
[5]Z. Deng, X. Hu, X. Lin, Y. Che, L. Xu, W. Guo, “Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression,” Energy, vol. 205, pp. 118000, 2020.
[6]Y. Xing, W. He, M. Pecht, K. Leung, “State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures,” Applied Energy, vol. 113, pp. 106-115, 2014.
[7]L. Zhang, K. Li, D. Du, C. Zhu, M. Zheng, “A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries,” IFAC-PapersOnLine, vol. 52, no. 11 , pp. 256-261, 2019.
[8]M. A. Roscher, D. U. Sauer, “Dynamic electric behavior and open-circuit-voltage modeling of LiFePO 4 -based lithium ion secondary batteries,” Jounal Power Sources, 2011.
[9]C. Campestrini, S. Kosch, A. Jossen, “Influence of change in open circuit voltage on the state of charge estimation with an extended Kalman filter,” Jounal Energy Storage, vol. 12, pp. 149-156, 2017.
[10]J. Shen, J. Xiong, X. Shu, G. Li, Y. Zhang, Z. Chen, et al, “State of charge estimation framework for lithium-ion batteries based on square root cubature Kalman filter under wide operation temperature range,” Int. Jounal Energy Res., 2020.
[11]Y. Zhang, R. Xiong, H. He, W. Shen, “Lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation,” IEEE Trans. Power Electron., 2017.
[12]H. He, R. Xiong, H. Guo, “Online estimation of model parameters and state-of charge of LiFePO4 batteries in electric vehicles,” Applied Energy, vol. 89, no. 1, pp. 413-420, 2012.
[13]Z. Deng, L. Yang, Y. Cai, H. Deng, L. Sun, “Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery,” Energy, vol. 112, pp. 469-480, 2016.
[14]S. Mendoza, J. Liu, P. Mishra, H. Fathy, “On the relative contributions of bias and noise to lithium-ion battery state of charge estimation errors,” Jounal Energy Storage, vol. 11, pp. 86-92, 2017.
[15]M.S. Hossain Lipu, M.A. Hannan, A. Hussain, A. Ayob, M.H.M. Saad, T.F. Karim, et al, “Data-driven state of charge estimation of lithium-ion batteries: algorithms, implementation factors, limitations and future trends,” Jounal Clean. Prod., vol. 277, 2020.
[16]J. Tian, R. Xiong, W. Shen, “State-of-Health estimation based on differential temperature for lithium ion batteries,” IEEE Trans. Power Electron., vol. 35, no.10, pp. 10363-10373, Oct. 2020.
[17]C. Vidal, P. Malysz, P. Kollmeyer and A. Emadi, “Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art,” IEEE Access, vol. 8, pp. 52796 – 52814, Mar. 2020.
[18]C. Vidal, M. Hauÿmann, D. Barroso, P. M. Shamsabadi, A. Biswas, E. Chemali, R. Ahmed, and A. Emadi, “Hybrid energy storage system state-of-charge estimation using arti_cial neural network for microhybrid applications,” IEEE Trans. Power Electr., pp. 1075-1081, June 2018.
[19]H. Chaoui, C. C. Ibe-Ekeocha, “State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks,” IEEE Trans. on Ind. Electr., vol. 66, no. 10, pp. 8773-8783, Oct. 2017.
[20]X. Song, F. Yang, D. Wang and K. Tsui, “Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries,” IEEE Access, vol. 7, pp. 88894-88902, July 2019.
[21]Y. Liu, J. Li, G. Zhang, B. Hua and N. Xiong, “State of Charge Estimation of Lithium-Ion Batteries Based on Temporal Convolutional Network and Transfer Learning,” IEEE Access, vol. 9, pp. 34177-34187, 2021.
[22]D. Zhou, Z. Li, J. Zhu, H. Zhang and L. Hou, “State of Health Monitoring and Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Temporal Convolutional Network,” IEEE Access, vol. 8, pp. 53307-53320, 2020.
[23]M. A. Hannan, D.N.T. How, M.S.H Lipu, et al. “Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model,” Sci Rep, vol. 11, 2021.
[24]M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, P. Van Den Bossche, “Critical review of state of health estimation methods of li-ion batteries for real applications,” Renew. Sustain. Energy Rev, vol. 56, 2016.
[25]C. Vidal, P. Malysz, P. Kollmeyer and A. Emadi, “Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art,” IEEE Access, vol. 8, pp. 52796-52814, 2020.
[26]D. Roman, S. Saxena, V. Robu et al., “Machine learning pipline for battery state-of-health estimation,” Nat Mach Intell , vol. 3, 2021.
[27]Zhan-yu WU, Qing-hai JIANG, Ming-hai ZHU, CHENG Chen, Da-lin WANG, Xiao-yu SHI, “State-of-Health Prediction of Lithium-Ion Batteries,” Advances in New and Renewable Energy, 2020.
[28]M. Grieves, “Digital twin: manufacturing excellence through virtual factory replication,” White Paper, 2014.
[29]E. Glaessgen, D. Stargel, “The digital twin paradigm for future NASA and U.S. air force vehicles,” Proceedings of 53rd structures, structural dynamics, and materials conference, 2012.
[30]J. Leng, D. Wang, W. Shen, X. Li, Q. Liu, X. Chen, “Digital twins-based smart manufacturing system design in Industry 4.0: a review,” Jounal Manuf Syst, 2021.
[31]P. Wang, M. Luo, “A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing,” Jounal Manuf Syst, 2021.
[32]A. A. Neto, E.R. da Silva, F. Deschamps, E.P. Lima, “Digital twins in manufacturing: an assessment of key features,” Proc CIRP, 2021.
[33]A. Ladj, Z. Wang, O. Meski, F. Belkadi, M.Ritou, C.D. Cunha, “A knowledge-based Digital Shadow for machining industry in a digital twin perspective,” Jounal Manuf Syst Part B, 2021.
[34]G. Bhatti, H. Mohan, R.R. Singh, “Towards the future of smart electric vehicles: digital twin technology,” Renew Sustain Energy Rev, 2021.
[35]W. Li, M. Rentemeister, J. Badeda, D. Jost, D. Schulte, D.U. Sauer, “Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation,” Jounal Energy Storage, 2020.
[36]S. Li, P. Zhao, “Big data driven vehicle battery management method: a novel cyberphysical system perspective,” Jounal Energy Storage, 2021.
[37]T. Kim, D. Makwana, A. Adhikaree, J.S. Vagdoda, Y. Lee, “Cloud-based battery condition monitoring and fault diagnosis platform for large-scale lithium-ion battery energy storage systems,” Energies, 2018.
[38]G. Bhatti, H. Mohan, R.R. Singh, “Towards the future of smart electric vehicles: Digital twin technology,” Renew Sustain Energy Rev, vol. 141, pp.110801, 2021.
[39]D. Chen, W. Hong and X. Zhou, “Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries,” IEEE Access, vol. 10, pp. 19621-19628, 2022.
[40]A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ Proc. Adv. Neural Inf. Process. Syst., pp. 5998–6008, 2017.
[41]X. Zhang, Y. Wang, D. Yang, Z. Chen, “Behavior data of battery and battery pack SOC estimation under different working conditions,” Data Brief , vol. 9, pp. 737–740, 2016.
[42]W. He, N. Williard, C. Chen, M. Pecht, “State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation,” Int. J. Electr. Power Energy Syst, vol. 62, pp. 783–791, 2014.
[43]Z. Chen, H. Zhao, X. Shu, Y. Zhang, J. Shen, Y. Liu, “Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter,” Energy, vol. 228, 2021.
[44]Y. Tian, R. Lai, X. Li, L. Xiang, J. Tian, “A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter,” Appl. Energy, vol. 265, pp.114789, 2020.
[45]F. Yang, S. Zhang, W. Li, Q. Miao, “State-of-charge estimation of lithium-ion batteries using LSTM and UKF,” Energy, vol. 201, pp. 117664, 2020.
[46]Y. X. Wang, Z. Chen, W. Zhang, “Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning,” Energy, vol. 244 , pp.123178, 2022.
[47]Y. Liu, J. Li, G. Zhang, B. Hua and N. Xiong, "State of Charge Estimation of Lithium-Ion Batteries Based on Temporal Convolutional Network and Transfer Learning," in IEEE Access, vol. 9, pp. 34177-34187, 2021.
[48]C. Vidal, P. Kollmeyer, E. Chemali and A. Emadi, “Li-ion Battery State of Charge Estimation Using Long Short-Term Memory Recurrent Neural Network with Transfer Learning,” IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2019, pp. 1-6.
[49]M.A. Hannan, D.N.T. How, M.S.H. Lipu, M. Mansor, P.J. Ker, Z.Y. Dong, et al, “Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model,” Sci Rep, 2021.
[50]Y. Liu, X. Shu, H. Yu, J. Shen, Zhang Y, Liu Y, et al, “State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning,” Jounal Energy Storage, 2021.
[51]J. Tian, R. Xiong, W. Shen, J. Lu, “State-of-charge estimation of LiFePO4 batteries in electric vehicles: a deep-learning enabled approach,” Applied Energy, vol. 291, pp. 116812, 2021.
[52]A. Bhattacharjee, A. Verma, S. Mishra and T. K. Saha, “Estimating State of Charge for xEV Batteries Using 1D Convolutional Neural Networks and Transfer Learning,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3123-3135, April 2021,
[53]Y. Qin, S. Adams and C. Yuen, “Transfer Learning-Based State of Charge Estimation for Lithium-Ion Battery at Varying Ambient Temperatures,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7304-7315, Nov. 2021.
[54]I. Oyewole, A. Chehade, Y. Kim “A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation,” Applied Energy, vol. 312 , pp. 118726, 2022.
[55]K.M. Borgwardt, A. Gretton, M.J. Rasch, H.P. Kriegel, B. Schölkopf, A.J. Smola, “Integrating structured biological data by kernel maximum mean discrepancy,” Bioinformatics, 2006.
[56]C. Bian, S. Yang and Q. Miao, "Cross-Domain State-of-Charge Estimation of Li-Ion Batteries Based on Deep Transfer Neural Network With Multiscale Distribution Adaptation," in IEEE Transactions on Transportation Electrification, vol. 7, no. 3, pp. 1260-1270, Sept. 2021.
[57]J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics, 2019.
[58]H. Shen, X. Zhou, Z. Wang, J. Wang,“State of charge estimation for lithium-ion battery using Transformer with immersion and invariance adaptive observer,” Journal of Energy Storage,” vol. 45,2022.

無法下載圖示 全文公開日期 2033/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE