簡易檢索 / 詳目顯示

研究生: 黃貞睿
Chen-Jui Huang
論文名稱: 透過臨場與原位光譜影像技術探索電化學能源材料
Exploring Electrochemical Energy Materials by in-operando/situ Spectroscopy and Imaging Techniques
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 吳溪煌
She-Huang Wu
吳乃立
Nae-Lih Wu
鄧熙聖
Hsisheng Teng
楊純誠
Chun-Chen Yang
張仍奎
Jeng-Kuei Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 163
中文關鍵詞: 臨場與原位光譜影像技術金屬電池鋰硫電池無陽極鋰金屬電池水系鋅金屬電池反應機制金屬沉積溶解行為充放電機制
外文關鍵詞: -situ/operando spectroscopy and imaging techniques, metal battery, Li-S battery, anode-free Li-metal batteries, aqueous Zn-metal battery, reaction mechanism, metal deposition/stripping, charge/discharge mechanism
相關次數: 點閱:383下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,隨著快速發展的電動車、穿戴式電子裝置與3C電子產品,對於儲存的需求也跟著與日俱增。然而,現今商業化鋰離子電池已逐漸達到其理論能量密度與電容量值,無法滿足更高之需求,發展下一世代高能量密度、高安全性、低成本、長壽命之儲能裝置乃是刻不容緩。針對此議題,可充放電之不同金屬電池因具有下列優點而非常具有潛力:(1) 使用低還原電位金屬實現更高能量密度 (如鋰金屬);(2) 可與轉化型正極材料(如硫、氧氣)搭配得到更高電容量與能量密度;(3)可透過組裝無陽極金屬電池進一步提升能量密度,且大幅降低生產成本與增加安全性;(4)使用地球富含與化學更加穩定之金屬元素(如鋅、鋁)作為負極材料以大幅降低生產成本與提升安全性。然而,如何提升金屬電池之充放電效能以達成商業化標準有賴於對正負極材料之反應機制的基礎科學了解,包括不同正極材料之充放電反應機制與金屬負極之沉積溶解機制。為此,臨場與原位之光譜與影像技術可做為一非常有力的工具用來分析材料結構與形貌在電池充放電過程中的演變,對於探索電化學儲能材料提供深入且全面的洞見。
本研究透過不同臨場(in-situ)與原位(in-operando)之光譜與影像技術探索不同金屬電池內部的各種反應機制,共分為三大主題與四個章節。第一章節旨在解析硫化聚丙烯腈(Sulfurized-polyacrylonitrile, S-cPAN)之分子結構與其合成機制,透過結合密度泛函理論計算(Density Function Theory, DFT)、X射線光電子能譜學與固態核磁共振光譜分析,提出S-cPAN分子結構中含有兩種氮原子環境(吡啶氮與吡咯氮)存在。此雙重氮環境不僅在材料合成時有效吸附S2分子,且催化了N-S共價鍵的生成,有別於以往文獻報導的單一C-S共價鍵。此外,透過理論計算之結果,本研究亦提出此兩種共價鍵於材料合成時的生成機制。
第二部分則利用臨場拉曼光譜與X光吸收光譜,結合DFT理論計算,解析S-cPAN在鋰硫電池中的充放電機制。結果顯示,有別於傳統硫碳復合正極之「固態-液態-固態」轉化反應,S-cPAN進行一「固態-固態」轉化反應。小分子硫(-Sx-, 2≤x≤4)透過C-S與N-S共價鍵附著於PAN之高分子鏈上,在放電池透過先斷開S-S共價鍵後斷開C-S與N-S共價鍵,直接於高分子鏈上還原,進而消除了多硫化物(Polysulfides)的穿梭效應(Shuttle-effect)。此外,亦發現碳化PAN之高分子鏈會參與其電荷補償反應,且可在S-cPAN完全鋰化時有效的化學性吸附硫化鋰(Li2S)於高分子鏈含氮側,進而提高此硫化高分子之反應可逆性與穩定性。
其次在第三部分結合臨場光學顯微鏡(Optical Microscopy, OM)與穿透視X光顯微鏡(Transmission X-ray Microscopy, TXM)技術觀測鋰金屬之沉積溶解行為,提出其對應之成核(Nucleation)、枝晶(Dendrite)/失活鋰(Dead-Li)生長機制。並提出一整合式解析策略(Integrated protocol)進行無陽極鋰金屬電池(Anode-free Li-metal batteries, AFLMBs)中之各項不可逆庫倫效率的來源判別與定量分析。透過分析此整合策略拆解出之訊息,能對無陽極鋰金屬電池乃至鋰金屬電池皆擁有更深入的了解,對於未來的研究提供更全面的認識與方向。
第四部分透過互補的原位X光繞射光譜與TXM觀測並探討鋅金屬於高濃度雙鹽類水系電解液中沉積溶解時之結構與形貌演化,以及與其相關之鈍化層(Passivation layer)生成機制。結果顯示高濃度鹽類可有效降低自由水分子(Free water)含量,抑制鋅金屬水解副反應的發生,並生成堅固且較為平滑的鈍化層以抑制枝晶生長。研究結果對於水系電解液設計與鋅枝晶抑制提出洞見的資訊。
本研究展示了臨場與原位之光譜影像技術在解析電化學能源材料內部的複雜反應機制,與金屬電池中不同金屬沉積溶解行為扮演的重要角色。透過臨場與原位技術得到之深入且全面的訊息,可對於近一步提升金屬電池充放電效能提出有效的策略,最終實現商業化高能量密度、高安全性、低成本且長循環壽命的電化學儲能裝置。


With the surging growth of energy demand from electric vehicles and portable electronics, the current lithium-ion battery technology approaches its theoretical limit regarding energy density and specific capacity. The development of next-generation energy-dense, high safety, and long lifespan battery technologies has never been more critical. In this regard, rechargeable metal batteries are promising solutions due to due to several reasons: (1) use of low reduction potential metal to realize higher energy density (e.g., Li, -3.04 V vs. SHE); (2) capable of pairing with conversion-type but metal-ion deficient cathodes with higher specific capacity (e.g., Li-S, Li-air batteries); (3) anode-free metal batteries to achieve even higher energy density with ease of fabrication and high safety; (4) the use of earth-abundant and chemically stable metals as anode material for low-cost and safe batteries (e.g., Zn and Al). However, the further improvement of each metal-based battery on their performance meeting the commercialization criteria still relies on the fundamental understanding of reaction mechanisms at both cathode and anode electrodes, including redox reactions of cathode materials and metallic anode deposition/stripping mechanisms. For this purpose, in-situ/operando imaging and spectroscopy techniques are powerful tools to probe the structural and morphological evolution of electrode materials, which could provide in-depth insights on exploring various electrochemical energy materials.
This dissertation describes the development of rechargeable metal-based batteries and the utilization of advanced imaging and spectroscopy techniques to unravel the underlying reaction mechanisms within them. The first part of this work identified the molecular structure of sulfurized-polyacrylonitrile (S-cPAN) through the combination of ex-situ X-ray Photoelectron Spectroscopy (XPS), solid-state nuclear magnetic resonance (ssNMR), and density functional theory (DFT). The coexistence of pyridinic/pyrrolic nitrogen (NPD/NPL) is observed and reported for the first time. This plays a vital role in attracting S2 molecules and facilitating N−S bond formation apart from the generally accepted C−S bond in S-cPAN. The new findings suggest a more reasonable S-cPAN molecular structure to address this longstanding debate.
In the second part of this work, using experimental in-situ Raman spectroscopy and X-ray absorption spectroscopy (XAS) and DFT calculation, lithiation/delithiation mechanism of S-cPAN in Li-S battery is studied. The results show a solid-solid transformation reaction during the lithiation/delithiation of S-cPAN, with the cPAN backbone involves in the charge compensation that chemically absorbs Li2S along the nitrogen edge of cPAN matrix. The proposed modified mechanism deciphers the outstanding electrochemical performance of S-cPAN, providing a new pathway for designing high capacity, shuttle-free cathode materials for next-generation Li–S batteries, and a new perspective of sulfur chemistry.
The third part of this work focuses on investigating Li deposition/stripping mechanism and determining the sources of irreversible Coulombic efficiency (irr-CE) anode-free Li-metal batteries (AFLMBs), respectively. In-situ optical microscopy (OM) and transmission X-ray microscopy (TXM) are employed to unravel the information of Li growth including nucleation process and dendrite/dead-Li formation. Furthermore, an integrated protocol combining different types of cell configuration is presented to determine various sources of irreversible coulombic efficiency in anode-free lithium metal cells. The decrypted information from the protocol provides an insightful understanding of the behaviors of LMBs and AFLMBs, which promotes their development for practical applications.
Lastly, with the complementary results obtained from in-operando X-ray diffraction and TXM, the structural and morphological evolution of Zn deposition/stripping with the relating passivation layer formation is comprehensively monitored and studied, providing insightful information of the Zn dendrite suppression and inhibiting electrolyte decomposition in aqueous Zn-metal batteries (AZMBs).
In general, this work demonstrates the critical role that in-situ/operando spectroscopy and imaging techniques play in understanding the intricate reaction mechanisms of electrochemical energy materials and the metal deposition/stripping behaviors. With the valuable and in-depth understanding gained from the in-situ/operando characterization techniques, practical strategies for further improving the cycle performance and lifespan of rechargeable metal-based batteries can be developed, leading to the realization of energy-dense, low-cost, and high safety energy storage systems with long-term stability.

摘要 I ABSTRACT III ACKNOWLEDGEMENTS V SYMBOLS XI ABBREVIATIONS XII LIST OF FIGURES XIV LIST OF TABLES XIX Chapter 1 Introduction and Background 1 1.1 Electrochemical cells 2 1.2 Rechargeable metal batteries 3 1.3 Lithium-sulfur batteries 6 1.3.1 Fundamental principle and development roadmap 6 1.3.2 Carbonaceous composites 9 1.3.3 Metal oxides and metal sulfides 11 1.3.4 Lithium sulfide (Li2S) 12 1.3.5 Sulfurized-polymer and sulfurized polyacrylonitrile (S-cPAN) 12 1.4 Anode-free Lithium Metal Batteries 14 1.4.1 Fundamental principle and development roadmap 14 1.4.2 Surface engineering on current collector 17 1.4.3 Functional electrolytes 17 1.4.4 Electrolyte additives 18 1.4.5 Testing protocols 19 1.4.6 Electrode architecture 20 1.4.7 Fundamental studies 20 1.5 Aqueous Zinc-Metal Batteries 22 1.5.1 Fundamental principle and development roadmap 22 1.5.2 Early study on Zn dendrite growth 24 1.5.3 Functional Additives 24 1.5.4 Artificial surface coating 24 1.5.5 Electrolyte formulation 25 1.5.6 Modification of substrate 25 1.5.7 Anode-free ZMB 26 1.6 In-operando/situ spectroscopy and imaging techniques for battery researches 27 1.6.1 In-situ/operando spectroscopy techniques 27 1.6.2 In-situ/operando imaging techniques 32 1.7 Motivation and scope 37 1.7.1 Molecular structure and reaction mechanisms of S-cPAN 37 1.7.2 Dead-Li formation and irreversible reactions in AFLMBs 38 1.7.3 Zn deposition/stripping mechanism in aqueous electrolyte 38 Chapter 2 Experimental details and characterization techniques 39 2.1 Material preparation 39 2.1.1 Synthesis of S-cPAN 39 2.1.2 Synthesis of S-cPEG 39 2.1.3 Synthesis of S/C composites 39 2.1.4 Anode-free Li-metal battery 39 2.1.5 Cell assembly 40 2.2 XPS 41 2.2.1 Fundamental principle 41 2.2.2 Experimental considerations 41 2.3 Solid-state nuclear magnetic resonance spectroscopy 42 2.3.1 Magic-angle spinning (MAS) 43 2.3.2 ssNMR measurements 43 2.4 Raman spectroscopy 44 2.4.1 Fundamental principle 44 2.4.2 Experimental considerations 45 2.5 X-ray absorption spectroscopy 46 2.5.1 Fundamental principle 46 2.5.2 Experimental considerations 48 2.6 Optical microscopy 50 2.6.1 Experimental considerations 50 2.6.2 In-situ/operando OM measurements 50 2.7 Transmission X-ray microscopy 51 2.7.1 Experimental considerations 51 2.8 X-ray powder diffraction 52 2.8.1 Experimental considerations 53 2.8.2 In-operando XRD measurements 54 2.9 Electrochemical tests 55 2.9.1 Li-S batteries 55 2.9.2 Anode-free cells 56 Chapter 3 New Insights into the N-S Bond Formation of Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries 57 3.1 Synopsis 57 3.2 Results and discussion 57 3.2.1 Electrochemical performance of S-cPAN vs. S-cPEG 57 3.2.2 Chemical environment of S-cPAN unraveled by spectroscopic techniques 59 3.2.3 Cooperation with DFT calculation 62 3.3 Summary 66 Chapter 4 Origin of Shuttle-Free Sulfurized Polyacrylonitrile in Lithium-Sulfur Batteries 67 4.1 Synopsis 67 4.2 Results and discussion 68 4.2.1 Characterization and Electrochemical Property 68 4.2.2 Computed Raman Spectra 73 4.2.3 In-situ Raman Measurement 75 4.2.4 XAS Analysis of S-cPAN 79 4.2.5 Solid-solid transformation mechanism of S-cPAN 82 4.3 Summary 86 Chapter 5 Decoupling the Origins of Irreversible Coulombic Efficiency in Anode-Free Lithium Metal Batteries 87 5.1 Synopsis 87 5.2 Results and discussion 88 5.2.1 In-situ OM observation of Li deposition/dissolution 88 5.2.2 Li nucleation and deposition/dissolution mechanism 89 5.2.3 Proposed integrated protocol 91 5.2.4 Procedures to obtain irr-CEs in different cell configurations 99 5.2.5 Experimental validation for the proposed protocol 101 5.2.6 Comparison of Initial Overpotential and Polarization at 50% SOC 103 5.2.7 Calculation of average coulombic efficiency of NMC//Li and NMC//Cu cells 103 5.2.8 Example 1: 1M LiPF6 in EC:DEC under 0.2 mA cm-2 104 5.2.9 Example 2: 1M LiPF6 in EC:DEC under 0.4 mA cm-2. 105 5.2.10 Example 3: 1M LiPF6 in EC:DEC with 5% FEC. 107 5.3 Summary 110 Chapter 6 In-operando Characterized Zn Deposition and Stripping behavior in aqueous electrolyte 111 6.1 Synopsis 111 6.2 Results and discussion 112 6.2.1 Morphological evaluation of Zn plating/stripping 112 6.2.2 Formation of passivation layer in Zn||Cu cell studied by in-operando XRD 118 6.2.3 Structural evolution of LFP cathode material in Zn||LFP cell 121 6.3 Summary 123 Chapter 7 Conclusion and perspective 125 7.1 Conclusion 125 7.2 Perspective 126 References 127

1. Zhu, K.; Wang, C.; Chi, Z.; Ke, F.; Yang, Y.; Wang, A.; Wang, W.; Miao, L., How Far Away Are Lithium-Sulfur Batteries From Commercialization? Frontiers in Energy Research 2019, 7, 123.
2. Viswanathan, V.; Thygesen, K. S.; Hummelshoj, J. S.; Norskov, J. K.; Girishkumar, G.; McCloskey, B. D.; Luntz, A. C., Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J Chem Phys 2011, 135 (21), 214704.
3. Nanda, S.; Gupta, A.; Manthiram, A., Anode‐Free Full Cells: A Pathway to High‐Energy Density Lithium‐Metal Batteries. Adv Energy Mater 2020, 11 (2), 2000804.
4. Wan, F.; Zhou, X. Z.; Lu, Y.; Niu, Z. Q.; Chen, J., Energy Storage Chemistry in Aqueous Zinc Metal Batteries. ACS Energy Letters 2020, 5 (11), 3569-3590.
5. Goodenough, J. B., How we made the Li-ion rechargeable battery. Nature Electronics 2018, 1 (3), 204-204.
6. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
7. Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G., Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 2012, 51 (40), 9994-10024.
8. Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
9. Zanini, M.; Basu, S.; Fischer, J. E., Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon 1978, 16 (3), 211-212.
10. Ashuri, M.; He, Q.; Shaw, L. L., Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 2016, 8 (1), 74-103.
11. Matheson, R. Doubling battery power of consumer electronics. https://news.mit.edu/2016/lithium-metal-batteries-double-power-consumer-electronics-0817.
12. Wang, D. W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. M.; Gentle, I. R.; Lu, G. Q. M., Carbon-sulfur composites for Li-S batteries: status and prospects. Journal of Materials Chemistry A 2013, 1 (33), 9382-9394.
13. Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S., Rechargeable Lithium–Sulfur Batteries. Chemical Reviews 2014, 114 (23), 11751-11787.
14. Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F. F., Review on Li-Sulfur Battery Systems: an Integral Perspective. Advanced Energy Materials 2015, 5 (16), 1500212.
15. Mikhaylik, Y. V.; Akridge, J. R., Polysulfide Shuttle Study in the Li/S Battery System. Journal of The Electrochemical Society 2004, 151 (11), A1969-A1976.
16. Busche, M. R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J., Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources 2014, 259, 289-299.
17. Cheon, S.-E.; Ko, K.-S.; Cho, J.-H.; Kim, S.-W.; Chin, E.-Y.; Kim, H.-T., Rechargeable lithium sulfur battery II. Rate capability and cycle characteristics. Journal of The Electrochemical Society 2003, 150 (6), A800-A805.
18. Shim, J.; Striebel, K. A.; Cairns, E. J., The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. Journal of the Electrochemical Society 2002, 149 (10), A1321-A1325.
19. Cha, E.; Patel, M.; Bhoyate, S.; Prasad, V.; Choi, W., Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Nanoscale Horiz 2020, 5 (5), 808-831.
20. Ji, X.; Lee, K. T.; Nazar, L. F., A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009, 8 (6), 500-506.
21. Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science 2010, 3 (10), 1531-1537.
22. Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G., Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy & Environmental Science 2011, 4 (12), 5053-5059.
23. Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H., Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 2011, 11 (7), 2644-2647.
24. Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J., Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 2012, 134 (45), 18510-18513.
25. Lin, Z.; Liu, Z.; Dudney, N. J.; Liang, C., Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 2013, 7 (3), 2829-33.
26. Li, Z.; Yuan, L.; Yi, Z.; Sun, Y.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z.; Huang, Y., Insight into the Electrode Mechanism in Lithium-Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode. Adv Energy Mater 2014, 4 (7), 1301473.
27. Jiang, J.; Zhu, J.; Ai, W.; Wang, X.; Wang, Y.; Zou, C.; Huang, W.; Yu, T., Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat Commun 2015, 6, 8622.
28. Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H.; Brezesinski, T.; Janek, J.; Nazar, L. F., Tuning Transition Metal Oxide-Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle. Adv Energy Mater 2016, 6 (6), 1501636.
29. Lei, T.; Chen, W.; Huang, J.; Yan, C.; Sun, H.; Wang, C.; Zhang, W.; Li, Y.; Xiong, J., Multi-Functional Layered WS2Nanosheets for Enhancing the Performance of Lithium-Sulfur Batteries. Adv Energy Mater 2017, 7 (4), 1601843.
30. Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy & Environmental Science 2017, 10 (6), 1476-1486.
31. Wang, X. F.; Qian, Y. M.; Wang, L. N.; Yang, H.; Li, H. L.; Zhao, Y.; Liu, T. X., Sulfurized Polyacrylonitrile Cathodes with High Compatibility in Both Ether and Carbonate Electrolytes for Ultrastable Lithium-Sulfur Batteries. Adv Funct Mater 2019, 29 (39), 1902929.
32. Fang, R. P.; Xu, J. T.; Wang, D. W., Covalent fixing of sulfur in metal-sulfur batteries. Energy & Environmental Science 2020, 13 (2), 432-471.
33. Yang, Y.; Zheng, G.; Misra, S.; Nelson, J.; Toney, M. F.; Cui, Y., High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc 2012, 134 (37), 15387-15394.
34. Tan, G. Q.; Xu, R.; Xing, Z. Y.; Yuan, Y. F.; Lu, J.; Wen, J. G.; Liu, C.; Ma, L.; Zhan, C.; Liu, Q.; Wu, T. P.; Jian, Z. L.; Shahbazian-Yassar, R.; Ren, Y.; Miller, D. J.; Curtiss, L. A.; Ji, X. L.; Amine, K., Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nature Energy 2017, 2 (7), 17090.
35. Danuta, H.; Juliusz, U., Electric dry cells and storage batteries. Google Patents: 1962.
36. Bhaskara, R. M. L., Organic electrolyte cells. Google Patents: 1968.
37. Zheng, G.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y., Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 2011, 11 (10), 4462-3367.
38. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F., A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun 2015, 6, 5682.
39. Wei Seh, Z.; Li, W.; Cha, J. J.; Zheng, G.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun 2013, 4, 1331.
40. Li, Z.; Zhang, J.; Lou, X. W., Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2015, 54 (44), 12886-12890.
41. Cheng, Z. B.; Xiao, Z. B.; Pan, H.; Wang, S. Q.; Wang, R. H., Elastic Sandwich-Type rGO-VS2/S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium-Sulfur Batteries with High Energy Density. Adv Energy Mater 2018, 8 (10), 1702337.
42. Yan, J. H.; Li, B. Y.; Liu, X. B., Nano-porous sulfur-polyaniline electrodes for lithium-sulfurbatteries. Nano Energy 2015, 18, 245-252.
43. Talapaneni, S. N.; Hwang, T. H.; Je, S. H.; Buyukcakir, O.; Choi, J. W.; Coskun, A., Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2016, 55 (9), 3106-3111.
44. Xu, F.; Yang, S.; Jiang, G.; Ye, Q.; Wei, B.; Wang, H., Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium-Sulfur Batteries. ACS Appl Mater Interfaces 2017, 9 (43), 37731-37738.
45. Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M. J., Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat Commun 2015, 6, 7278.
46. Wang, W. X.; Cao, Z.; Elia, G. A.; Wu, Y. Q.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A. H.; Cavallo, L.; Li, L. J.; Ming, J., Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li-S Batteries and beyond in Al-S Batteries. ACS Energy Letters 2018, 3 (12), 2899-2907.
47. Wei, S.; Ma, L.; Hendrickson, K. E.; Tu, Z.; Archer, L. A., Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. J Am Chem Soc 2015, 137 (37), 12143-12152.
48. Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X., A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 2002, 14 (13-14), 963-965.
49. Yin, L.; Wang, J.; Yang, J.; Nuli, Y., A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. Journal of Materials Chemistry 2011, 21 (19), 6807.
50. Yin, L. C.; Wang, J. L.; Lin, F. J.; Yang, J.; Nuli, Y., Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy & Environmental Science 2012, 5 (5), 6966-6972.
51. Frey, M.; Zenn, R. K.; Warneke, S.; Müller, K.; Hintennach, A.; Dinnebier, R. E.; Buchmeiser, M. R., Easily Accessible, Textile Fiber-Based Sulfurized Poly(acrylonitrile) as Li/S Cathode Material: Correlating Electrochemical Performance with Morphology and Structure. ACS Energy Letters 2017, 2 (3), 595-604.
52. Neudecker, B. J.; Dudney, N. J.; Bates, J. B., “Lithium-Free” Thin-Film Battery with In Situ Plated Li Anode. Journal of The Electrochemical Society 2000, 147 (2), 517.
53. Qian, J. F.; Adams, B. D.; Zheng, J. M.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S. C.; Hu, J. Z.; Zhang, J. G., Anode-Free Rechargeable Lithium Metal Batteries. Adv Funct Mater 2016, 26 (39), 7094-7102.
54. Zhang, S. S.; Fan, X. L.; Wang, C. S., A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta 2017, 258, 1201-1207.
55. Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689.
56. Tian, Y.; An, Y. L.; Wei, C. L.; Jiang, H. Y.; Xiong, S. L.; Feng, J. K.; Qian, Y. T., Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 2020, 78, 105344.
57. Wang, M. J.; Carmona, E.; Gupta, A.; Albertus, P.; Sakamoto, J., Enabling "lithium-free" manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat Commun 2020, 11 (1), 5201.
58. Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B.; Yang, J. H.; Zhang, J. G.; Whittingham, M. S., Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy 2020, 5 (8), 561-568.
59. Xie, Z. K.; Wu, Z. J.; An, X. W.; Yue, X. Y.; Wang, J. J.; Abudula, A.; Guan, G. Q., Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials 2020, 32, 386-401.
60. Lin, L.; Qin, K.; Zhang, Q.; Gu, L.; Suo, L.; Hu, Y. S.; Li, H.; Huang, X.; Chen, L., Li-Rich Li2 [Ni0.8 Co0.1 Mn0.1 ]O2 for Anode-Free Lithium Metal Batteries. Angew. Chem. Int. Ed. 2021, 60 (15), 8289-8296.
61. Zegeye, T. A.; Tsai, M. C.; Cheng, J. H.; Lin, M. H.; Chen, H. M.; Rick, J.; Su, W. N.; Kuo, C. F. J.; Hwang, B. J., Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries. Journal of Power Sources 2017, 353, 298-311.
62. Hagos, T. T.; Thirumalraj, B.; Huang, C. J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S. F.; Su, W. N.; Hwang, B. J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Appl Mater Interfaces 2019, 11 (10), 9955-9963.
63. Hagos, T. T.; Su, W. N.; Huang, C. J.; Thirumalraj, B.; Chiu, S. F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Tegegne, W. A.; Cherng, J. Y.; Yang, Y. W.; Hwang, B. J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources 2020, 461, 228053.
64. Sahalie, N. A.; Wondimkun, Z. T.; Su, W. N.; Weret, M. A.; Fenta, F. W.; Berhe, G. B.; Huang, C. J.; Hsu, Y. C.; Hwang, B. J., Multifunctional Properties of Al2O3/Polyacrylonitrile Composite Coating on Cu to Suppress Dendritic Growth in Anode-Free Li-Metal Battery. ACS Applied Energy Materials 2020, 3 (8), 7666-7679.
65. Shitaw, K. N.; Yang, S. C.; Jiang, S. K.; Huang, C. J.; Sahalie, N. A.; Nikodimos, Y.; Weldeyohannes, H. H.; Wang, C. H.; Wu, S. H.; Su, W. N.; Hwang, B. J., Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode‐Free Li‐Metal Battery. Advanced Functional Materials 2020, 31 (6), 2006951.
66. Wondimkun, Z. T.; Beyene, T. T.; Weret, M. A.; Sahalie, N. A.; Huang, C. J.; Thirumalraj, B.; Jote, B. A.; Wang, D. Y.; Su, W. N.; Wang, C. H.; Brunklaus, G.; Winter, M.; Hwang, B. J., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources 2020, 450, 227589.
67. Huang, C. J.; Thirumalraj, B.; Tao, H. C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L. M.; Wang, C. C.; Wu, S. H.; Su, W. N.; Hwang, B. J., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat Commun 2021, 12 (1), 1452.
68. Wondimkun, Z. T.; Tegegne, W. A.; Shi-Kai, J.; Huang, C. J.; Sahalie, N. A.; Weret, M. A.; Hsu, J. Y.; Hsieh, P. L.; Huang, Y. S.; Wu, S. H.; Su, W. N.; Hwang, B. J., Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries. Energy Storage Materials 2021, 35, 334-344.
69. Luo, J.; Fang, C. C.; Wu, N. L., High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes. Adv Energy Mater 2018, 8 (2), 1701482.
70. Assegie, A. A.; Cheng, J. H.; Kuo, L. M.; Su, W. N.; Hwang, B. J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
71. Assegie, A. A.; Chung, C. C.; Tsai, M. C.; Su, W. N.; Chen, C. W.; Hwang, B. J., Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale 2019, 11 (6), 2710-2720.
72. Abrha, L. H.; Zegeye, T. A.; Hagos, T. T.; Sutiono, H.; Hagos, T. M.; Berhe, G. B.; Huang, C. J.; Jiang, S. K.; Su, W. N.; Yang, Y. W.; Hwang, B. J., Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. Electrochimica Acta 2019, 325, 134825.
73. Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C. J.; Wang, C. H.; Su, W. N.; Dai, H. J.; Hwang, B. J., Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. Journal of the Electrochemical Society 2019, 166 (8), A1501-A1509.
74. Jote, B. A.; Beyene, T. T.; Sahalie, N. A.; Weret, M. A.; Olbassa, B. W.; Wondimkun, Z. T.; Berhe, G. B.; Huang, C. J.; Su, W. N.; Hwang, B. J., Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. Journal of Power Sources 2020, 461, 228102.
75. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S. F.; Huang, C. J.; Su, W. N.; Dai, H. J.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722-10733.
76. Yu, Z.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y. C.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S.; Zheng, Y.; Amanchukwu, C. V.; Hung, S. T.; Ma, Y. T.; Lomeli, E. G.; Qin, J.; Cui, Y.; Bao, Z. N., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy 2020, 5 (7), 526-533.
77. Hagos, T. M.; Berhe, G. B.; Hagos, T. T.; Bezabh, H. K.; Abrha, L. H.; Beyene, T. T.; Huang, C. J.; Yang, Y. W.; Su, W. N.; Dai, H. J.; Hwang, B. J., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta 2019, 316, 52-59.
78. Sahalie, N. A.; Assegie, A. A.; Su, W. N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C. J.; Yang, Y. W.; Hwang, B. J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437, 226912.
79. Brown, Z. L.; Heiskanen, S.; Lucht, B. L., Using Triethyl Phosphate to Increase the Solubility of LiNO3 in Carbonate Electrolytes for Improving the Performance of the Lithium Metal Anode. Journal of The Electrochemical Society 2019, 166 (12), A2523-A2527.
80. Genovese, M.; Louli, A. J.; Weber, R.; Hames, S.; Dahn, J. R., Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society 2018, 165 (14), A3321-A3325.
81. Genovese, M.; Louli, A. J.; Weber, R.; Martin, C.; Taskovic, T.; Dahn, J. R., Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society 2019, 166 (14), A3342-A3347.
82. Louli, A. J.; Genovese, M.; Weber, R.; Hames, S. G.; Logan, E. R.; Dahn, J. R., Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society 2019, 166 (8), A1291-A1299.
83. Beyene, T. T.; Jote, B. A.; Wondimkun, Z. T.; Olbassa, B. W.; Huang, C. J.; Thirumalraj, B.; Wang, C. H.; Su, W. N.; Dai, H.; Hwang, B. J., Effects of Concentrated Salt and Resting Protocol on Solid Electrolyte Interface Formation for Improved Cycle Stability of Anode-Free Lithium Metal Batteries. ACS Appl Mater Interfaces 2019, 11 (35), 31962-31971.
84. Liu, H. D.; Holoubek, J.; Zhou, H. Y.; Wu, Z. H.; Xing, X.; Yu, S. C.; Veith, G. M.; Li, Y. J.; Hu, M.; Choi, Y. J.; Liu, P., An anode-free Li metal cell with replenishable Li designed for long cycle life. Energy Storage Materials 2021, 36, 251-256.
85. Cheng, J. H.; Assegie, A. A.; Huang, C. J.; Lin, M. H.; Tripathi, A. M.; Wang, C. C.; Tang, M. T.; Song, Y. F.; Su, W. N.; Hwang, B. J., Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy. J Phys Chem C 2017, 121 (14), 7761-7766.
86. Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; Lu, B.; Williams, N.; Ceja, M.; Yang, L.; Cai, M.; Gu, J.; Xu, K.; Wang, X.; Meng, Y. S., Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515.
87. Thirumalraj, B.; Hagos, T. T.; Huang, C. J.; Teshager, M. A.; Cheng, J. H.; Su, W. N.; Hwang, B. J., Nucleation and Growth Mechanism of Lithium Metal Electroplating. J Am Chem Soc 2019, 141 (46), 18612-18623.
88. Naveed, A.; Yang, H.; Shao, Y.; Yang, J.; Yanna, N.; Liu, J.; Shi, S.; Zhang, L.; Ye, A.; He, B., A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long‐Cycle‐Life Batteries. J. Adv. Mater. 2019, 31 (36), 1900668.
89. Feng, Y.; Zhang, Q.; Liu, S.; Liu, J.; Tao, Z.; Chen, J., A novel aqueous sodium–manganese battery system for energy storage. J. Mater. Chem. A 2019, 7 (14), 8122-8128.
90. An, Y.; Tian, Y.; Zhang, K.; Liu, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y., Stable Aqueous Anode‐Free Zinc Batteries Enabled by Interfacial Engineering. Adv Funct Mater 2021, 31 (26), 2101886.
91. Olbasa, B. W.; Fenta, F. W.; Chiu, S. F.; Tsai, M. C.; Huang, C. J.; Jote, B. A.; Beyene, T. T.; Liao, Y. F.; Wang, C. H.; Su, W. N.; Dai, H.; Hwang, B. J., High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Applied Energy Materials 2020, 3 (5), 4499-4508.
92. Naybour, R. D., The Effect of Electrolyte Flow on the Morphology of Zinc Electrodeposited from Aqueous Alkaline Solution Containing Zincate Ions. Journal of The Electrochemical Society 1969, 116 (4), 520.
93. Bockris, J. O. M.; Nagy, Z.; Drazic, D., On the Morphology of Zinc Electrodeposition from Alkaline Solutions. Journal of The Electrochemical Society 1973, 120 (1), 30.
94. Oren, Y.; Landau, U., Growth of zinc dendrites in acidic zinc chloride solutions. Electrochimica Acta 1982, 27 (6), 739-748.
95. Banik, S. J.; Akolkar, R., Suppressing Dendrite Growth during Zinc Electrodeposition by PEG-200 Additive. Journal of the Electrochemical Society 2013, 160 (11), D519-D523.
96. Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y., Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries. Adv Energy Mater 2018, 8 (25), 1801090.
97. Lee, B. S.; Cui, S.; Xing, X.; Liu, H.; Yue, X.; Petrova, V.; Lim, H. D.; Chen, R.; Liu, P., Dendrite Suppression Membranes for Rechargeable Zinc Batteries. ACS Appl Mater Interfaces 2018, 10 (45), 38928-38935.
98. Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C., Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018, 17 (6), 543-549.
99. Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy & Environmental Science 2019, 12 (6), 1938-1949.
100. Lin, M. H.; Huang, C. J.; Cheng, P. H.; Cheng, J. H.; Wang, C. C., Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc-air batteries: mechanism studies of dendrite suppression and corrosion inhibition. Journal of Materials Chemistry A 2020, 8 (39), 20637-20649.
101. Yin, Y.; Wang, S.; Zhang, Q.; Song, Y.; Chang, N.; Pan, Y.; Zhang, H.; Li, X., Dendrite-Free Zinc Deposition Induced by Tin-Modified Multifunctional 3D Host for Stable Zinc-Based Flow Battery. Adv Mater 2020, 32 (6), 1906803.
102. Qiu, H.; Du, X.; Zhao, J.; Wang, Y.; Ju, J.; Chen, Z.; Hu, Z.; Yan, D.; Zhou, X.; Cui, G., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat Commun 2019, 10 (1), 5374.
103. Zhao, J.; Zhang, J.; Yang, W.; Chen, B.; Zhao, Z.; Qiu, H.; Dong, S.; Zhou, X.; Cui, G.; Chen, L., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 2019, 57, 625-634.
104. Banik, S. J.; Akolkar, R., Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive. Electrochimica Acta 2015, 179, 475-481.
105. Mitha, A.; Yazdi, A. Z.; Ahmed, M.; Chen, P., Surface Adsorption of Polyethylene Glycol to Suppress Dendrite Formation on Zinc Anodes in Rechargeable Aqueous Batteries. Chemelectrochem 2018, 5 (17), 2409-2418.
106. Li, W.; Wang, K.; Zhou, M.; Zhan, H.; Cheng, S.; Jiang, K., Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Appl Mater Interfaces 2018, 10 (26), 22059-22066.
107. Zhao, K. N.; Wang, C. X.; Yu, Y. H.; Yan, M. Y.; Wei, Q. L.; He, P.; Dong, Y. F.; Zhang, Z. Y.; Wang, X. D.; Mai, L. Q., Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Adv Mater Interfaces 2018, 5 (16), 1800848.
108. Chen, C. Y.; Matsumoto, K.; Kubota, K.; Hagiwara, R.; Xu, Q., A Room‐Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries. Adv Energy Mater 2019, 9 (22), 1900196.
109. Wang, L. P.; Li, N. W.; Wang, T. S.; Yin, Y. X.; Guo, Y. G.; Wang, C. R., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochimica Acta 2017, 244, 172-177.
110. Dong, W.; Shi, J. L.; Wang, T. S.; Yin, Y. X.; Wang, C. R.; Guo, Y. G., 3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO2 batteries. RSC Advances 2018, 8 (34), 19157-19163.
111. Shen, C.; Li, X.; Li, N.; Xie, K.; Wang, J. G.; Liu, X.; Wei, B., Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery. ACS Appl Mater Interfaces 2018, 10 (30), 25446-25453.
112. Chao, D.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H.; Wang, J.; Wang, R.; Zhang, H.; Fan, H. J., A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Adv Mater 2018, 30 (32), 1803181.
113. Kang, Z.; Wu, C.; Dong, L.; Liu, W.; Mou, J.; Zhang, J.; Chang, Z.; Jiang, B.; Wang, G.; Kang, F.; Xu, C., 3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (3), 3364-3371.
114. Zhu, Y.; Cui, Y.; Alshareef, H. N., An Anode-Free Zn-MnO2 Battery. Nano Lett 2021, 21 (3), 1446-1453.
115. Inaba, M.; Yoshida, H.; Ogumi, Z.; Abe, T.; Mizutani, Y.; Asano, M., In-Situ Raman-Study on Electrochemical Li-Intercalation into Graphite. Journal of the Electrochemical Society 1995, 142 (1), 20-26.
116. Dahn, J. R., Phase diagram of LixC6. Phys Rev B Condens Matter 1991, 44 (17), 9170-9177.
117. Hy, S.; Felix, F.; Rick, J.; Su, W. N.; Hwang, B. J., Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 </= x </= 0.5). J Am Chem Soc 2014, 136 (3), 999-1007.
118. Owen, J.; Hector, A., Materials science. Phase-transforming electrodes. Science 2014, 344 (6191), 1451-1452.
119. Yu, X.; Lyu, Y.; Gu, L.; Wu, H.; Bak, S.-M.; Zhou, Y.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K.-W.; Yang, X.-Q., Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials. Adv Energy Mater 2014, 4 (5), 1300950.
120. Zhou, Y. N.; Ma, J.; Hu, E.; Yu, X.; Gu, L.; Nam, K. W.; Chen, L.; Wang, Z.; Yang, X. Q., Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat Commun 2014, 5, 5381.
121. Chen, C.-H.; Pan, C.-J.; Su, W.-N.; Rick, J.; Wang, C.-J.; Venkateswarlu, M.; Lee, J.-F.; Hwang, B.-J., Operando X-ray diffraction and X-ray absorption studies of the structural transformation upon cycling excess Li layered oxide Li[Li1/18Co1/6Ni1/3Mn4/9]O2 in Li ion batteries. Journal of Materials Chemistry A 2015, 3 (16), 8613-8626.
122. Leenheer, A. J.; Jungjohann, K. L.; Zavadil, K. R.; Sullivan, J. P.; Harris, C. T., Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy. ACS Nano 2015, 9 (4), 4379-89.
123. Lim, J.; Li, Y.; Alsem, D. H.; So, H.; Lee, S. C.; Bai, P.; Cogswell, D. A.; Liu, X.; Jin, N.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A.; Bazant, M. Z.; Tyliszczak, T.; Chueh, W. C., Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 2016, 353 (6299), 566-571.
124. Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P., Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent Sci 2016, 2 (11), 790-801.
125. Rong, G.; Zhang, X.; Zhao, W.; Qiu, Y.; Liu, M.; Ye, F.; Xu, Y.; Chen, J.; Hou, Y.; Li, W.; Duan, W.; Zhang, Y., Liquid-Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution. Adv Mater 2017, 29 (13), 1606187.
126. Wang, X.; Zhang, M.; Alvarado, J.; Wang, S.; Sina, M.; Lu, B.; Bouwer, J.; Xu, W.; Xiao, J.; Zhang, J. G.; Liu, J.; Meng, Y. S., New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Lett 2017, 17 (12), 7606-7612.
127. Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F., Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature 2018, 560 (7718), 345-349.
128. Yu, S. H.; Huang, X.; Brock, J. D.; Abruna, H. D., Regulating Key Variables and Visualizing Lithium Dendrite Growth: An Operando X-ray Study. J Am Chem Soc 2019, 141 (21), 8441-8449.
129. Hsieh, Y.-C.; Leißing, M.; Nowak, S.; Hwang, B.-J.; Winter, M.; Brunklaus, G., Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy. Cell Reports Physical Science 2020, 1 (8), 100139.
130. Sun, M. H.; Liu, T. F.; Yuan, Y. F.; Ling, M.; Xu, N.; Liu, Y. Y.; Yan, L. J.; Li, H.; Liu, C. Y.; Lu, Y. Y.; Shi, Y.; He, Y.; Guo, Y. S.; Tao, X. Y.; Liang, C. D.; Lu, J., YY Visualizing Lithium Dendrite Formation within Solid-State Electrolytes. ACS Energy Letters 2021, 6 (2), 451-458.
131. Wu, H. L.; Huff, L. A.; Gewirth, A. A., In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries. ACS Appl Mater Interfaces 2015, 7 (3), 1709-1719.
132. Liu, H.; Strobridge, F. C.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P., Batteries. Capturing metastable structures during high-rate cycling of LiFePO(4) nanoparticle electrodes. Science 2014, 344 (6191), 1252817.
133. Zhou, Y. N.; Yue, J. L.; Hu, E. Y.; Li, H.; Gu, L.; Nam, K. W.; Bak, S. M.; Yu, X. Q.; Liu, J.; Bai, J. M.; Dooryhee, E.; Fu, Z. W.; Yang, X. Q., High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries. Adv Energy Mater 2016, 6 (21), 1600597.
134. Gorlin, Y.; Siebel, A.; Piana, M.; Huthwelker, T.; Jha, H.; Monsch, G.; Kraus, F.; Gasteiger, H. A.; Tromp, M., Operando Characterization of Intermediates Produced in a Lithium-Sulfur Battery. Journal of the Electrochemical Society 2015, 162 (7), A1146-A1155.
135. Zhang, L.; Sun, D.; Feng, J.; Cairns, E. J.; Guo, J., Revealing the Electrochemical Charging Mechanism of Nanosized Li2S by in Situ and Operando X-ray Absorption Spectroscopy. Nano Lett 2017, 17 (8), 5084-5091.
136. Bhattacharyya, R.; Key, B.; Chen, H.; Best, A. S.; Hollenkamp, A. F.; Grey, C. P., In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat Mater 2010, 9 (6), 504-510.
137. Gunnarsdottir, A. B.; Amanchukwu, C. V.; Menkin, S.; Grey, C. P., Noninvasive In Situ NMR Study of "Dead Lithium" Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries. J Am Chem Soc 2020, 142 (49), 20814-20827.
138. Xia, X. X.; Di Leo, C. V.; Gu, X. W.; Greer, J. R., In Situ Lithiation-Delithiation of Mechanically Robust Cu-Si Core-Shell Nanolattices in a Scanning Electron Microscope. ACS Energy Letters 2016, 1 (3), 492-499.
139. Wei, C. Y.; Lee, P. C.; Tsao, C. W.; Lee, L. H.; Wang, D. Y.; Wen, C. Y., In situ Scanning Electron Microscopy Observation of MoS2 Nanosheets during Lithiation in Lithium Ion Batteries. ACS Applied Energy Materials 2020, 3 (7), 7066-7072.
140. Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y.; Perrino, J.; Butz, B.; Chu, S.; Cui, Y., Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358 (6362), 506-510.
141. Li, Y. Z.; Huang, W.; Li, Y. B.; Pei, A.; Boyle, D. T.; Cui, Y., Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy. Joule 2018, 2 (10), 2167-2177.
142. Alvarado, J.; Schroeder, M. A.; Pollard, T. P.; Wang, X. F.; Lee, J. Z.; Zhang, M. H.; Wynn, T.; Ding, M.; Borodin, O.; Meng, Y. S.; Xu, K., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy & Environmental Science 2019, 12 (2), 780-794.
143. Sanchez, A. J.; Kazyak, E.; Chen, Y. X.; Chen, K. H.; Pattison, E. R.; Dasgupta, N. P., Plan-View Operando Video Microscopy of Li Metal Anodes: Identifying the Coupled Relationships among Nucleation, Morphology, and Reversibility. ACS Energy Letters 2020, 5 (3), 994-1004.
144. Kojima, T.; Ando, H.; Takeichi, N.; Senoh, H., Sulfurized Polyethylene Glycol as Electrode Material for Li-S Battery. Ecs Transactions 2017, 75 (20), 201-206.
145. Hollander, J. M.; Jolly, W. L., X-ray photoelectron spectroscopy. Accounts of chemical research 1970, 3 (6), 193-200.
146. Einstein, A., Über einem die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der physik 1905, 4.
147. Sokolowski, E.; Nordling, C.; Siegbahn, K., Magnetic analysis of x-ray produced photo and auger electrons. Arkiv Fysik 1957, 12.
148. Schematic drawing of a typical XPS setup. https://jacobs.physik.uni-saarland.de.
149. Xu, J.; Wang, Q.; Li, S.; Deng, F., Solid-State NMR Principles and Techniques. In Solid-State NMR in Zeolite Catalysis, Springer Singapore: Singapore, 2019; pp 1-55.
150. Raman, C. V., A new radiation. Indian Journal of physics 1928, 2, 387-398.
151. Lohumi, S.; Kim, M. S.; Qin, J. W.; Cho, B. K., Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials. Trac-Trends in Analytical Chemistry 2017, 93, 183-198.
152. Cho, Y. C.; Ahn, S. I., Fabricating a Raman spectrometer using an optical pickup unit and pulsed power. Sci Rep 2020, 10 (1), 11692.
153. Hieulle, J. Structures and Electronic Properties of Organic Self-Assembled Monolayers Characterized by STM and XPS
Structure et propriétés électroniques de monocouches organiques autoassemblées caractérisées par STM et XPS. Ecole Doctorale de l'Ecole Polytechnique, 2014.
154. Adams, F.; Barbante, C., Chapter 6 - X-Ray Imaging. In Comprehensive Analytical Chemistry, Adams, F.; Barbante, C., Eds. Elsevier: 2015; Vol. 69, pp 213-268.
155. Zhou, X.; Thompson, G. E., Electron and Photon Based Spatially Resolved Techniques. In Reference Module in Materials Science and Materials Engineering, Elsevier: 2017.
156. The mar345TM Image Plate X-ray Diffraction Detector. https://www.marxperts.com/man/mar345/img/mar345.jpg.
157. National Synchrotron Radiation Research Center TPS-19A linear XRD endstation. http://tpsbl.nsrrc.org.tw/userdata/upload/19A/Gallery/TPS19A-4.jpg.png.
158. Huang, C. J.; Lin, K. Y.; Hsieh, Y. C.; Su, W. N.; Wang, C. H.; Brunklaus, G.; Winter, M.; Jiang, J. C.; Hwang, B. J., New Insights into the N-S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries. ACS Appl Mater Interfaces 2021, 13 (12), 14230-14238.
159. Mukkabla, R.; Buchmeiser, M. R., Cathode materials for lithium-sulfur batteries based on sulfur covalently bound to a polymeric backbone. Journal of Materials Chemistry A 2020, 8 (11), 5379-5394.
160. Liu, Y.; Wang, W.; Wang, J.; Zhang, Y.; Zhu, Y.; Chen, Y.; Fu, L.; Wu, Y., Sulfur nanocomposite as a positive electrode material for rechargeable potassium-sulfur batteries. Chem Commun (Camb) 2018, 54 (18), 2288-2291.
161. Li, S.; Zeng, Z.; Yang, J.; Han, Z.; Hu, W.; Wang, L.; Ma, J.; Shan, B.; Xie, J., High Performance Room Temperature Sodium–Sulfur Battery by Eutectic Acceleration in Tellurium-Doped Sulfurized Polyacrylonitrile. ACS Applied Energy Materials 2019, 2 (4), 2956-2964.
162. Wang, J.; Yang, J.; Wan, C.; Du, K.; Xie, J.; Xu, N., Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials 2003, 13 (6), 487-492.
163. Yu, X.-g.; Xie, J.-y.; Yang, J.; Huang, H.-j.; Wang, K.; Wen, Z.-s., Lithium storage in conductive sulfur-containing polymers. Journal of Electroanalytical Chemistry 2004, 573 (1), 121-128.
164. Wang, X. W.; Gao, T.; Han, F. D.; Ma, Z. H.; Zhang, Z.; Li, J.; Wang, C. S., Stabilizing high sulfur loading Li-S batteries by chemisorption of polysulfide on three-dimensional current collector. Nano Energy 2016, 30, 700-708.
165. Yu, M.; Ma, J.; Song, H.; Wang, A.; Tian, F.; Wang, Y.; Qiu, H.; Wang, R., Atomic layer deposited TiO2on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy & Environmental Science 2016, 9 (4), 1495-1503.
166. Kapteijn, F.; Moulijn, J. A.; Matzner, S.; Boehm, H. P., The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon 1999, 37 (7), 1143-1150.
167. Frey, M.; Zenn, R. K.; Warneke, S.; Muller, K.; Hintennach, A.; Dinnebier, R. E.; Buchmeiser, M. R., Easily Accessible, Textile Fiber-Based Sulfurized Poly(acrylonitrile) as Li/S Cathode Material: Correlating Electrochemical Performance with Morphology and Structure. ACS Energy Letters 2017, 2 (3), 595-604.
168. Doan, T. N. L.; Ghaznavi, M.; Zhao, Y.; Zhang, Y. G.; Konarov, A.; Sadhu, M.; Tangirala, R.; Chen, P., Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode. Journal of Power Sources 2013, 241, 61-69.
169. Li, G.; Sun, J.; Hou, W.; Jiang, S.; Huang, Y.; Geng, J., Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat Commun 2016, 7, 10601.
170. Wang, Y.; Xu, L.; Wang, M.; Pang, W.; Ge, X., Structural Identification of Polyacrylonitrile during Thermal Treatment by Selective13C Labeling and Solid-State13C NMR Spectroscopy. Macromolecules 2014, 47 (12), 3901-3908.
171. Weret, M. A.; Kuo, C. F. J.; Zeleke, T. S.; Beyene, T. T.; Tsai, M. C.; Huang, C. J.; Berhe, G. B.; Su, W. N.; Hwang, B. J., Mechanistic understanding of the Sulfurized-Poly(acrylonitrile) cathode for lithium-sulfur batteries. Energy Storage Materials 2020, 26, 483-493.
172. Liu, X.; Makita, Y.; Hong, Y.-l.; Nishiyama, Y.; Miyoshi, T., Chemical Reactions and Their Kinetics of atactic-Polyacrylonitrile As Revealed by Solid-State 13C NMR. Macromolecules 2016, 50 (1), 244-253.
173. Lyčka, A., NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY-APPLICABLE ELEMENTS | Nitrogen-15. In Encyclopedia of Analytical Science, Worsfold, P.; Townshend, A.; Poole, C., Eds. Elsevier: Oxford, 2005; pp 272-278.
174. Marek, R.; Lycka, A., 15N NMR Spectroscopy in Structural Analysis. Current Organic Chemistry 2002, 6 (1), 35-66.
175. Huang, C.-J.; Cheng, J.-H.; Su, W.-N.; Partovi-Azar, P.; Kuo, L.-Y.; Tsai, M.-C.; Lin, M.-H.; Panahian Jand, S.; Chan, T.-S.; Wu, N.-L.; Kaghazchi, P.; Dai, H.; Bieker, P. M.; Hwang, B.-J., Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries. Journal of Power Sources 2021, 492, 229508.
176. Kim, J.-S.; Hwang, T. H.; Kim, B. G.; Min, J.; Choi, J. W., A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials 2014, 24 (34), 5359-5367.
177. Konarov, A.; Gosselink, D.; Doan, T. N. L.; Zhang, Y.; Zhao, Y.; Chen, P., Simple, scalable, and economical preparation of sulfur–PAN composite cathodes for Li/S batteries. Journal of Power Sources 2014, 259, 183-187.
178. Yu, X.; Xie, J.; Li, Y.; Huang, H.; Lai, C.; Wang, K., Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. Journal of Power Sources 2005, 146 (1-2), 335-339.
179. Wang, L.; He, X. M.; Li, J. J.; Chen, M.; Gao, J.; Jiang, C. Y., Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries. Electrochimica Acta 2012, 72, 114-119.
180. Zhang, S., Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery. Energies 2014, 7 (7), 4588-4600.
181. Wang, L.; He, X.; Li, J.; Gao, J.; Guo, J.; Jiang, C.; Wan, C., Analysis of the synthesis process of sulphur–poly(acrylonitrile)-based cathode materials for lithium batteries. Journal of Materials Chemistry 2012, 22 (41), 22077.
182. Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, A.; Buchmeiser, M. R., Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries. Chemistry of Materials 2011, 23 (22), 5024-5028.
183. Wei, S.; Ma, L.; Hendrickson, K. E.; Tu, Z.; Archer, L. A., Metal–Sulfur Battery Cathodes Based on PAN–Sulfur Composites. J Am Chem Soc 2015, 137 (37), 12143-12152.
184. Fanous, J.; Wegner, M.; Grimminger, J.; Rolff, M.; Spera, M. B. M.; Tenzer, M.; Buchmeiser, M. R., Correlation of the electrochemistry of poly(acrylonitrile)–sulfur composite cathodes with their molecular structure. Journal of Materials Chemistry 2012, 22 (43), 23240.
185. Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W.-C., High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery. ACS applied materials & interfaces 2013, 5 (6), 2208-2213.
186. Ding, B.; Shen, L.; Xu, G.; Nie, P.; Zhang, X., Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochimica Acta 2013, 107 (0), 78-84.
187. Yim, T.; Park, M.-S.; Yu, J.-S.; Kim, K. J.; Im, K. Y.; Kim, J.-H.; Jeong, G.; Jo, Y. N.; Woo, S.-G.; Kang, K. S.; Lee, I.; Kim, Y.-J., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochimica Acta 2013, 107, 454-460.
188. Miller, J. V.; Bartick, E. G., Forensic Analysis of Single Fibers by Raman Spectroscopy. Applied Spectroscopy 2016, 55 (12), 1729-1732.
189. Yeon, J. T.; Jang, J. Y.; Han, J. G.; Cho, J.; Lee, K. T.; Choi, N. S., Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge. Journal of the Electrochemical Society 2012, 159 (8), A1308-A1314.
190. Hagen, M.; Schiffels, P.; Hammer, M.; Dorfler, S.; Tubke, J.; Hoffmann, M. J.; Althues, H.; Kaskel, S., In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells. Journal of the Electrochemical Society 2013, 160 (8), A1205-A1214.
191. Reish, M. E.; Nam, S.; Lee, W.; Woo, H. Y.; Gordon, K. C., A Spectroscopic and DFT Study of the Electronic Properties of Carbazole-Based D–A Type Copolymers. The Journal of Physical Chemistry C 2012, 116 (40), 21255-21266.
192. Hwang, T. H.; Jung, D. S.; Kim, J.-S.; Kim, B. G.; Choi, J. W., One-Dimensional Carbon–Sulfur Composite Fibers for Na–S Rechargeable Batteries Operating at Room Temperature. Nano Letters 2013, 13 (9), 4532-4538.
193. Beevers, R. B., Dependence of the glass transition temperature of polyacrylonitrile on molecular weight. Journal of Polymer Science Part A: General Papers 1964, 2 (12), 5257-5265.
194. Luo, Y.-R., Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press: 2002.
195. Han, K.; Shen, J.; Hao, S.; Ye, H.; Wolverton, C.; Kung, M. C.; Kung, H. H., Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries. ChemSusChem 2014, 7 (9), 2545-2553.
196. Yin, L.-C.; Liang, J.; Zhou, G.-M.; Li, F.; Saito, R.; Cheng, H.-M., Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 2016, 25, 203-210.
197. Zhang, M.; Yu, C.; Zhao, C.; Song, X.; Han, X.; Liu, S.; Hao, C.; Qiu, J., Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Materials 2016, 5, 223-229.
198. Bertheville, B.; Bill, H.; Hagemann, H., Experimental Raman scattering investigation of phonon anharmonicity effects in Li2S. J Phys-Condens Mat 1998, 10 (9), 2155-2169.
199. Hardwick, L. J.; Ruch, P. W.; Hahn, M.; Scheifele, W.; Kötz, R.; Novák, P., In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. Journal of Physics and Chemistry of Solids 2008, 69 (5-6), 1232-1237.
200. Jalilehvand, F., Sulfur: not a "silent" element any more. Chem Soc Rev 2006, 35 (12), 1256-1268.
201. Alonso Mori, R.; Paris, E.; Giuli, G.; Eeckhout, S. G.; Kavčič, M.; Žitnik, M.; Bučar, K.; Pettersson, L. G. M.; Glatzel, P., Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy. Analytical Chemistry 2009, 81 (15), 6516-6525.
202. Gao, J.; Lowe, M. A.; Kiya, Y.; Abruna, H. D., Effects of Liquid Electrolytes on the Charge-Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies. J Phys Chem C 2011, 115 (50), 25132-25137.
203. Rettig, S. J.; Trotter, J., Refinement of the structure of orthorhombic sulfur, α-S8. Acta Crystallographica Section C Crystal Structure Communications 1987, 43 (12), 2260-2262.
204. Watanabe, Y., The crystal structure of monoclinic γ-sulphur. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 1974, 30 (6), 1396-1401.
205. Dominko, R.; Patel, M. U. M.; Lapornik, V.; Vizintin, A.; Kozelj, M.; Tusar, N. N.; Arcon, I.; Stievano, L.; Aquilanti, G., Analytical Detection of Polysulfides in the Presence of Adsorption Additives by Operando X-ray Absorption Spectroscopy. J Phys Chem C 2015, 119 (33), 19001-19010.
206. Cuisinier, M.; Cabelguen, P. E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F., Sulfur Speciation in Li-S Batteries Determined by Operando X-ray Absorption Spectroscopy. J. Phys. Chem. Lett. 2013, 4 (19), 3227-3232.
207. Markevich, E.; Salitra, G.; Rosenman, A.; Talyosef, Y.; Chesneau, F.; Aurbach, D., Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries. Electrochemistry Communications 2015, 60, 42-46.
208. Markevich, E.; Salitra, G.; Rosenman, A.; Talyosef, Y.; Chesneau, F.; Aurbach, D., The effect of a solid electrolyte interphase on the mechanism of operation of lithium–sulfur batteries. J. Mater. Chem. A 2015, 3 (39), 19873-19883.
209. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
210. Burns, J. C.; Krause, L. J.; Le, D. B.; Jensen, L. D.; Smith, A. J.; Xiong, D. J.; Dahn, J. R., Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms. Journal of the Electrochemical Society 2011, 158 (12), A1417-A1422.
211. Ryou, M. H.; Lee, Y. M.; Lee, Y. J.; Winter, M.; Bieker, P., Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating. Adv Funct Mater 2015, 25 (6), 834-841.
212. Gao, J.; Sun, C. S.; Xu, L.; Chen, J.; Wang, C.; Guo, D. C.; Chen, H., Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. Journal of Power Sources 2018, 382, 179-189.
213. Kang, S. H.; Yoon, W. S.; Nam, K. W.; Yang, X. Q.; Abraham, D. P., Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries. Journal of Materials Science 2008, 43 (14), 4701-4706.
214. Zhou, H.; Xin, F.; Pei, B.; Whittingham, M. S., What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries? ACS Energy Letters 2019, 4 (8), 1902-1906.
215. Teshager, M. A.; Lin, S. D.; Hwang, B.-J.; Wang, F.-M.; Hy, S.; Haregewoin, A. M., In Situ DRIFTS Analysis of Solid-Electrolyte Interphase Formation on Li-Rich Li1.2Ni0.2Mn0.6O2 and LiCoO2 Cathodes during Oxidative Electrolyte Decomposition. ChemElectroChem 2016, 3 (2), 337-345.
216. Lin, M.-H.; Cheng, J.-H.; Huang, H.-F.; Chen, U. F.; Huang, C.-M.; Hsieh, H.-W.; Lee, J.-M.; Chen, J.-M.; Su, W.-N.; Hwang, B.-J., Revealing the mitigation of intrinsic structure transformation and oxygen evolution in a layered Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode using restricted charging protocols. Journal of Power Sources 2017, 359, 539-548.
217. Betz, J.; Brinkmann, J. P.; Nolle, R.; Lurenbaum, C.; Kolek, M.; Stan, M. C.; Winter, M.; Placke, T., Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium. Adv Energy Mater 2019, 9 (21), 1900574.
218. Zhang, X. Q.; Wang, X. M.; Li, B. Q.; Shi, P.; Huang, J. Q.; Chen, A. B.; Zhang, Q., Crosstalk shielding of transition metal ions for long cycling lithium-metal batteries. Journal of Materials Chemistry A 2020, 8 (8), 4283-4289.
219. Lee, H.; Lim, H. S.; Ren, X. D.; Yu, L.; Engelhard, M. H.; Han, K. S.; Lee, J.; Kim, H. T.; Xiao, J.; Liu, J.; Xu, W.; Zhang, J. G., Detrimental Effects of Chemical Crossover from the Lithium Anode to Cathode in Rechargeable Lithium Metal Batteries. ACS Energy Letters 2018, 3 (12), 2921-2930.
220. Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Adv Funct Mater 2017, 27 (10), 1605989.

無法下載圖示 全文公開日期 2024/08/23 (校內網路)
全文公開日期 2024/08/23 (校外網路)
全文公開日期 2024/08/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE