簡易檢索 / 詳目顯示

研究生: 張家逢
Chia-Feng Chang
論文名稱: 金屬輔助化學蝕刻矽晶製作黑片之後表面處理程序最適化
Optimization of surface treatment after forming black silicon by metal-assisted chemical etching method
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
葉秉慧
Ping-Hui Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 黑晶片金屬輔助化學蝕刻法反射率載子生命週期
外文關鍵詞: Black silicon, metal-assisted chemical etching, reflection, minority carrier lifetime
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討黑晶片的蝕刻條件來達到低反射率,同時探討清洗方式對黑晶片的影響來達到低反射率且高載子生命週期的黑晶片。以我們蝕刻液的配方,我們發現在p-type FZ晶片上成長黑晶片結構時,反射率不會隨著蝕刻時間增加而增加,而是在135秒會有最低點約為4% (600nm波段)。接著我們進行清洗條件的最佳化發現利用氨水的清洗方式會造成過度的蝕刻,對黑晶片奈米孔洞的結構會造成嚴重破壞,鹽酸和硫酸對黑晶片的結構破壞較不嚴重,而且硫酸的清洗效果相較於其他方法好,載子生命週期可以達到950μs (以碘液鈍化的情況下),同時反射率約為5% (600nm波段)。最後我們實際應用在經KOH蝕刻成金字塔結構晶片上,載子生命週期可以達到684μs並且有5% (600nm波段)反射率,和只有KOH蝕刻成金字塔結構晶片相比反射率降低了8%,載子生命週期回復了61%。


We optimized the condition in metal-assisted chemical etching in order to obtain the lowest reflection of our black silicon. Meanwhile, we also optimized several cleaning methods to obtain black silicon which has low reflection but high minority carrier lifetime. We found that in our condition, reflection won’t get lower as the etching time stays longer. Our black silicon has reflection 4% at 600nm, while the etching time is 135 second. In cleaning part we found that ammonia is not suitable for cleaning black silicon because it causes too much etching to the wafer. Hydrochloric acid and sulphuric acid cause less etching to black silicon. Sulphuric acid has better cleaning ability than the others. We obtained 950μs minority carrier lifetime on our best black silicon and its reflection is 5% (at 600nm). Eventually we apply to KOH textured silicon wafer. We obtained 684μs minority carrier lifetime and reflection 5% at 600nm. Compare with wafers only textured by KOH, we lowered the reflection by 8% and the minority carrier lifetime recovered by 61%.

摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VII 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 黑晶片的發展與介紹 3 1.2.1黑晶片簡介 3 1.2.2金屬輔助化學蝕刻法 4 1.3矽晶片清潔原理 8 1.4研究動機與目的 11 第二章 實驗相關部分 12 2.1實驗氣體及藥品 12 2.2實驗程序 14 2.2.1 矽晶片之清洗 14 2.2.2 黑晶片製作與清洗程序 15 2.2.3 在金字塔結構的矽晶片上製作黑晶片結構 16 2.3分析儀器 17 2.3.1場發射掃描式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 17 2.3.2載子生命週期量測儀 (lifetime tester) 18 2.3.3飛行時間二次離子質譜儀(TOF-SIMS) 23 2.3.4紫外光/可見光光譜儀 (UV/VIS) 24 第三章 結果與討論 26 3.1銀觸媒的製備及蝕刻條件的最佳化 26 3.1.1銀觸媒的製備及蝕刻條件對黑晶片結構的影響 26 3.1.2銀觸媒的製備及蝕刻條件對黑晶片反射率的影響 33 3.1.3矽晶黑晶片反射率最佳化的探討 35 3.2清洗條件對殘留金屬的影響 39 3.2.1 硝酸清洗結果 39 3.2.2 以鹼性溶液做為黑晶片後清洗的實驗結果 43 3.2.3 以強氧化劑做為黑晶片後清洗試劑的實驗結果 49 3.2.4 影響黑晶片後清洗效果的原因探討 58 3.3金字塔結構加上黑晶片結構之黑晶片清洗結果 68 第四章 結論 72 參考資料 73

1. National Renewable Energy Laboratory, NREL. (2012). "Best Research-Cell Efficiencies." Golden, CO: NREL. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
2. 台灣太陽光電產業協會, 矽晶太陽電池技術、成本與性能.
3. Hsu, C.-H., et al., Fabrication and characteristics of black silicon for solar cell applications: An overview. Materials Science in Semiconductor Processing, 2014. 25: p. 2-17.
4. Lagos, N., M.M. Sigalas, and D. Niarchos, The optical absorption of nanowire arrays. Photonics and Nanostructures - Fundamentals and Applications, 2011. 9(2): p. 163-167.
5. Ma, L.L., et al., Wide-band “black silicon” based on porous silicon. Applied Physics Letters, 2006. 88(17): p. 171907.
6. Oh, J., H.C. Yuan, and H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol, 2012. 7(11): p. 743-8.
7. Savin, H., et al., Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol, 2015. 10(7): p. 624-8.
8. Bi, Y., et al., Plasma-etching fabrication and properties of black silicon by using sputtered silver nanoparticles as micromasks. Thin Solid Films, 2012. 521: p. 176-180.
9. Chartier, C., S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 2008. 53(17): p. 5509-5516.
10. Chourou, M.L., et al., Metal-assisted etching of p-type silicon under anodic polarization in HF solution with and without H2O2. Electrochimica Acta, 2010. 55(3): p. 903-912.
11. Huang, Z., et al., Metal-assisted chemical etching of silicon: a review. Adv Mater, 2011. 23(2): p. 285-308.
12. Akira Izumi, H.S., Shingi Hashioka, Manabu Kudo, Hideki Matsumura, Plasma and fluorocarbon-gas free Si dry etching process using a Cat-CVD system. Microelectronic Engineering, 2000: p. 495–503.
13. Ghafarinazari, A. and M. Mozafari, A systematic study on metal-assisted chemical etching of high aspect ratio silicon nanostructures. Journal of Alloys and Compounds, 2014. 616: p. 442-448.
14. Li, X. and P.W. Bohn, Metal-assisted chemical etching in HF/H[sub 2]O[sub 2] produces porous silicon. Applied Physics Letters, 2000. 77(16): p. 2572.
15. Asoh, H., F. Arai, and S. Ono, Effect of noble metal catalyst species on the morphology of macroporous silicon formed by metal-assisted chemical etching. Electrochimica Acta, 2009. 54(22): p. 5142-5148.
16. Ming-Liang Zhang, K.-Q.P., Xia Fan, Jian-Sheng Jie, Rui-Qin Zhang, and a.N.-B.W. Shuit-Tong Lee, Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching. Jornal of Physical Chemistry, 2007. 112.
17. 小川洋輝、崛池靖浩, 半導體潔淨技術. 民國92年11月22日: 楊明德.
18. Qin, K. and Y. Li, Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process. Journal of Colloid and Interface Science, 2003. 261(2): p. 569-574.
19. Mitsushi Itano, F.W.K., Jr., Masayuki Miyashita, and Tadahiro Ohmi, Particle Removal from Silicon Wafer Surface in Wet Cleaning Process. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 1993. 6.
20. Sinton Consulting, W.-P.L.T.a.o.S.-V.S.U.M., www.sintonconsulting.com.
21. Cuevas, R.A.S., “Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance”, Prog. Photovolt. 5, 79 (1997).
22. R.A. Sinton, A.C., “Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data”, Appl. Phys. Lett. 69, 2510 (1996).
23. D. Macdonald, R.A.S., A. Cuevas, “On the use of a bias-light correction for trapping effects in photoconductance-based lifetime measurements of silicon” , J. Appl. Phys. 89, 2772 (2001).
24. Bai, F., et al., Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer. Applied Surface Science, 2013. 273: p. 107-110.
25. Geng, X., et al., Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts. Solar Energy Materials and Solar Cells, 2012. 103: p. 98-107.
26. HICHEM M'SAAD, J.M., J.J. LAPPE, and L.C. KIMERLING, Electronic Passivation of Silicon Surfaces by Halogens. Journal of Electronic Materials, 1994. 23.
27. Jaballah, A.B., B. Moumni, and B. Bessais, Formation, rapid thermal oxidation and passivation of solar grade silicon nanowires for advanced photovoltaic applications. Solar Energy, 2012. 86(6): p. 1955-1961.
28. Koynov, S., M.S. Brandt, and M. Stutzmann, Black multi-crystalline silicon solar cells. physica status solidi (RRL) – Rapid Research Letters, 2007. 1(2): p. R53-R55.
29. Zhang, D., et al., Reflectance and minority carrier lifetime of silicon nanoholes synthesized by chemical etching method. Chemical Physics Letters, 2014. 601: p. 69-73.
30. Srivastava, S.K., et al., Silver catalyzed nano-texturing of silicon surfaces for solar cell applications. Solar Energy Materials and Solar Cells, 2012. 100: p. 33-38.

無法下載圖示 全文公開日期 2021/02/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE