簡易檢索 / 詳目顯示

研究生: 蔡宜軒
I-Hsuan Tsai
論文名稱: 以氣體霧化法製備之AlCrFeNi 高熵合金粉末性質探討
Study on the properties of AlCrFeNi high entropy alloy powders prepared by gas atomization process
指導教授: 丘群
Chun Chiu
陳士勛
Shih-Hsun Chen
口試委員: 曾堯宣
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 97
中文關鍵詞: 氣體霧化法高熵合金相變化退火熱處理AlCrFeNi
外文關鍵詞: Gas atomization, High entropy alloys, Annealing, Phase transformation, AlCrFeNi
相關次數: 點閱:339下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海上風電為應對嚴苛的工作環境,主要利用不同材料塗層構成有效抗環境腐蝕的防蝕系統,而在進一步發展中,為了使防蝕機制更加完善,使用粉末噴塗製程疊加高熵合金塗層在金屬塗層與316 基材間,作為中間塗層改善風力發電機塔柱的防蝕性能,可能是持續突破風機壽命的方案之一。故本實驗使用得以產出高品質粉末之氣體霧化法製備AlCrFeNi 粉末,進行熱處理試驗,對照其微觀形貌、晶體結構與成分組成的改變,比較其機械性質並透過鹽霧與酸液浸泡實驗研究其腐蝕行為,期望此合金之抗腐蝕性能得以作為海上風力發電機之中間塗層材料。合金粉末分別於500 至12001200℃固定持溫1 小時,並進行10001000℃下16 至36 小時長時間之熱處理後,皆與未經熱處理之粉末由A lNi 所組成的BCC/B2 相與F eCr 所組成的BCC/A2 結構相同,且於10001000℃ 36 小時之熱處理後,其內部有晶粒尺寸成長與相分離現象,而於粉末外圍出現之氧化鋁層,說明此合金具有耐高溫氧化之特性。利用熱力學演算後,因Al 與Ni 元素間具有最低之混合焓,加上A l 較大之原子半徑使合金發生晶格扭曲,阻礙元素的擴散並抑制生成析出相,形成有序之AlNi及無序之FeCr 組成的BCC 結構。在機械性質方面,熱處理前後之平均硬度分別為7.15 GPa與7.06 GPaGPa,說明熱處理所致的晶粒尺寸成長及相分離,與硬度數值間在此合金中沒有對應關係。5% NaCl 鹽霧腐蝕試驗中,於1095 小時內,AlCrFeNi 粉末皆無出現腐蝕痕跡,而316 不鏽鋼在73 小時後,發現些微孔蝕跡象,並隨著時間而增加;說明AlCrFeNi 擁有比316 不鏽鋼更佳之應對海岸環境侵蝕能力。在酸液浸泡試驗中,pH 4.5 之H2SO4 水溶液僅對316 不鏽鋼造成影響;而在pH 2.5 的酸液侵蝕後,316 不鏽鋼與腐蝕前之表面粗糙度差距為+ 62%;AlCrFeNi 初始及熱處理後之合金粉末,分別為+ 及+ 42%,說明AlCrFeNi 粉末在熱處理前後的耐酸蝕性皆高於316 不鏽鋼。綜觀上述研究後,可證明AlCrFeNi 合金粉末具有良好的機械性能與抗腐蝕特性,其中熱處理後之粉末,因晶粒尺寸之變化及相分離情形,降低其耐蝕性,使初始粉末擁有最佳之特性,而這些性質皆對海上風力發電機的應用至關重要,可以期待此合金在領域內的發展。


    In further development, in order to improve the anti corrosion mechanism, the use of powder coating process to superimpose high entropy alloy coating between metal coating and Stainless Steel 316 base material as an intermediate coating to improve the anti corrosion performance of wind turbine towers may be one of the solutions for sustainable breakthrough in wind turbine life. Therefore, in this experiment, AlCrFeNi powder was prepared by gas atomization method, which can produce high quality powder, and heat treatment test was conducted to compare its microscopic morphology, crystalline structure and composition changes, and to compare its mechanical properties and study its corrosion behavior by salt spray and acid immersion test. The alloy powders were subjected to a fixed temperature of 500 to 1200°C for 1 hour and heat treatment at 1000°C for 16 to 36 hours, and the structure of BCC/B2 phase composed of AlNi and BCC/A2 composed of FeCr was the same as that of the untreated powder. The appearance of the alumina layer around the powder ind icates that this alloy has the characteristics of high temperature oxidation resistance. After thermodynamic calculations, the alloy has the lowest mixing enthalpy between Al and Ni elements, and the larger atomic radius of Al distorts the lattice, which h inders the diffusion of elements and inhibits the generation of precipitation phases,
    forming a BCC structure composed of ordered AlNi and disordered FeCr. In terms of mechanical properties, the average hardness before and after heat treatment was 7.15 GPa and 7.06 GPa respectively, indicating that there was no correspondence between the grain size growth and phase separation caused by heat treatment and the hardness value in this alloy. It shows that
    AlCrFeNi has a better ability to cope with coastal corro sion than Stainless Steel 316 . In the acid immersion test, the aqueous solution of H2SO4 at pH=4.5 only affected the stainless steel 316; after the acid corrosion at pH=2.5, the difference in surface roughness between the stainless steel
    316 and before cor rosion was +62%; the alloy powder of AlCrFeNi was +21% and +42% after the initial and heat treatment, respectively. The acid and corrosion resistance of AlCrFeNi powder the initial and heat treatment, respectively. The acid and corrosion resistance of AlCrFeNi powder before and after heat treatment are higher than that of before and after heat treatment are higher than that of stainless steel stainless steel 316. After the above study, 316. After the above study, it can be proved that the AlCrFeNi alloy powder has good mechanical properties and antiit can be proved that the AlCrFeNi alloy powder has good mechanical properties and anti--corrosion properties. The change of grain size and phase separation of the powder after heat corrosion properties. The change of grain size and phase separation of the powder after heat treatment reduces its corrosion resistance, so treatment reduces its corrosion resistance, so that the initial powder has the best properties, and that the initial powder has the best properties, and these properties are important fthese properties are important for offshore wind turbine applications, and we can expect the or offshore wind turbine applications, and we can expect the development of this alloy in the field.development of this alloy in the field.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 第2章 文獻回顧 3 2.1 高熵合金應用於風力發電機塗層之前景 3 2.1.1 風力發電機之發展 3 2.1.2 環境腐蝕對風力發電機之影響 5 2.2 高熵合金之發展背景 9 2.2.1 高熵合金之定義 10 2.2.2 高熵合金之四大核心效應 11 2.3 高熵合金之熱力學演算 16 2.3.1 固溶體之形成 16 2.3.2 晶體結構之形成 18 2.4 高熵合金之系統 19 2.5 高熵合金之製程技術與應用 27 2.6 文獻回顧與實驗動機總結 31 第3章 實驗方法 33 3.1 實驗流程 33 3.2 實驗參數 34 3.2.1 粉末粒徑 34 3.2.2 真空熱處理參數 34 3.2.3 腐蝕參數 36 3.3 實驗分析樣品製備步驟 37 3.3.1 熱處理樣品製備 37 3.3.2 微觀結構、機械性質及腐蝕特性分析樣品製備 37 3.4 實驗分析及儀器原理 38 3.4.1 X射線繞射分析儀 38 3.4.2 熱重-熱示差同步分析儀 40 3.4.3 光學顯微鏡 41 3.4.4 場發射掃描式電子顯微鏡 42 3.4.5 奈米壓痕機械性質分析儀 46 3.4.6 鹽水噴霧試驗機 47 第4章 結果與討論 48 4.1 粉末基礎性質 48 4.2 熱處理溫度對合金粉末性質之影響 53 4.2.1 晶體結構分析 53 4.2.2 微觀結構與元素分佈分析 58 4.3 熱處理持溫時間對高熵合金粉末之影響 61 4.3.1 晶體結構分析 61 4.3.2 微觀結構及元素分佈分析 63 4.4 高熵合金粉末之相與晶粒尺寸鑑定 67 4.5 高熵合金之熱力學演算 70 4.5.1 固溶體之形成及元素擴散行為 70 4.5.2 晶體結構之形成 72 4.6 熱處理對高熵合金粉末機械性質之影響 73 4.7 熱處理對高熵合金粉末腐蝕特性之影響 75 第5章 結論 88 5.1 研究結果總結 88 5.2 未來展望 89 參考文獻 90

    [1] IEA, Renewable power’s growth is being turbocharged as countries seek to strengthen energy security,https://www.iea.org/news/renewable-power-s-growth-is-being-turbocharged-as-countries-seek-to-strengthen-energy-security, 2022 Dec
    [2] IRENA, Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects(A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi, 2019.
    [3] 4C Offshore, Global Offshore Wind Speeds Rankings,https://www.4coffshore.com/windfarms/windspeeds.aspx, 2023 Feb
    [4] L. Qiao, J. Zhu, Constitutive modeling of hot deformation behavior of AlCrFeNi multi-component alloy, Vacuum, 201 (2022) 111059.
    [5] M. Wang, Z. Wen, J. Liu, B. Ma, M. Wang, Z. Zou, Y. Zhao, Labyrinthine structure AlxCrFeNi (x≥ 1) eutectic high entropy alloys with duplex reinforced phases, Journal of Alloys and Compounds, 918 (2022) 165441.
    [6] M. Wang, Z. Wen, B. Ma, J. Liu, Z. Zou, Y. Zhao, Enhancing the strength of AlCrFeNi HEAs via tailoring aluminum content and optimal aging treatment, Journal of Alloys and Compounds, 893 (2022) 162242.
    [7] L. Qiao, R. Ramanujan, J. Zhu, Machine learning accelerated design of a family of AlxCrFeNi medium entropy alloys with superior high temperature mechanical and oxidation properties, Corrosion Science, 211 (2023) 110805.
    [8] H. Shi, A. Jianu, R. Fetzer, D.V. Szabo, S. Schlabach, A. Weisenburger, C. Tang, A. Heinzel, F. Lang, G. Mueller, Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead, Corrosion Science, 189 (2021) 109593.
    [9] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials, 6 (2004) 299-303.
    [10] M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123.
    [11] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375 (2004) 213-218.
    [12] B.S. Murty, J.-W. Yeh, S. Ranganathan, P. Bhattacharjee, High-entropy alloys, Elsevier, 2019.
    [13] P. Alves Dias, D. Blagoeva, C. Pavel, N. Arvanitidis, Cobalt: demand-supply balances in the transition to electric mobility, Publications Office of the European Union, 10 (2018) 97710.
    [14] M. Monge, L.A. Gil-Alana, Automobile components: lithium and cobalt. Evidence of persistence, Energy, 169 (2019) 489-495.
    [15] V. Yilanci, N.C. Turkmen, M.I. Shah, An empirical investigation of resource curse hypothesis for cobalt, Resources Policy, 78 (2022) 102843.
    [16] A.T. Hoang, A.M. Foley, S. Nižetić, Z. Huang, H.C. Ong, A.I. Ölçer, X.P. Nguyen, Energy-related approach for reduction of CO2 emissions: A strategic review on the port-to-ship pathway, Journal of Cleaner Production, (2022) 131772.
    [17] J. Lee, F. Zhao, Global Offshore Wind Report 2020. Belgium: Global Wind Energy Council (GWEC), in, 2020.
    [18] P. Gipe, E. Möllerström, An overview of the history of wind turbine development: Part II–The 1970s onward, Wind Engineering, 47 (2023) 220-248.
    [19] P. Gipe, E. Möllerström, An overview of the history of wind turbine development: Part I—The early wind turbines until the 1960s, Wind Engineering, 46 (2022) 1973-2004.
    [20] S.W. Ali, M. Sadiq, Y. Terriche, S.A.R. Naqvi, M.U. Mutarraf, M.A. Hassan, G. Yang, C.-L. Su, J.M. Guerrero, Offshore wind farm-grid integration: a review on infrastructure, challenges, and grid solutions, IEEE Access, 9 (2021) 102811-102827.
    [21] C.-D. Yue, I.-C. Wang, J.-S. Huang, Feasibility of Replacing Nuclear and Fossil Fuel Energy with Offshore Wind Energy: A Case for Taiwan, Energies, 15 (2022) 2385.
    [22] S. Roga, S. Bardhan, Y. Kumar, S.K. Dubey, Recent technology and challenges of wind energy generation: A review, Sustainable Energy Technologies and Assessments, 52 (2022) 102239.
    [23] Y. Chen, H. Lin, Overview of the development of offshore wind power generation in China, Sustainable Energy Technologies and Assessments, 53 (2022) 102766.
    [24] C.C.W. Chang, T.J. Ding, T.J. Ping, K.C. Chao, M.A.S. Bhuiyan, Getting more from the wind: Recent advancements and challenges in generators development for wind turbines, Sustainable Energy Technologies and Assessments, 53 (2022) 102731.
    [25] T. Asim, S.Z. Islam, A. Hemmati, M.S.U. Khalid, A review of recent advancements in offshore wind turbine technology, Energies, 15 (2022) 579.
    [26] B. Ramezanzadeh, M. Mohseni, H. Yari, S. Sabbaghian, An evaluation of an automotive clear coat performance exposed to bird droppings under different testing approaches, Progress in Organic Coatings, 66 (2009) 149-160.
    [27] S.J. Price, R.B. Figueira, Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives, Coatings, 7 (2017) 25.
    [28] A. Rashedi, I. Sridhar, K. Tseng, Multi-objective material selection for wind turbine blade and tower: Ashby’s approach, Materials & Design, 37 (2012) 521-532.
    [29] C. Wu, B.C. Meng, L.-h. Tam, L. He, Yellowing mechanisms of epoxy and vinyl ester resins under thermal, UV and natural aging conditions and protection methods, Polymer Testing, 114 (2022) 107708.
    [30] X. Sun, D. Huang, G. Wu, The current state of offshore wind energy technology development, Energy, 41 (2012) 298-312.
    [31] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat, 31 (2006) 633-648.
    [32] C.S. Smith, Four outstanding researches in metallurgical history, (1963).
    [33] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122 (2017) 448-511.
    [34] D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC press, 2017.
    [35] R.A. Swalin, J. Arents, Thermodynamics of solids, Journal of The Electrochemical Society, 109 (1962) 308C.
    [36] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom, 65 (2013) 1759-1771.
    [37] H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Local lattice distortion in high-entropy alloys, Physical Review Materials, 1 (2017) 023404.
    [38] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science, 61 (2014) 1-93.
    [39] E. Pickering, N. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews, 61 (2016) 183-202.
    [40] K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897.
    [41] B. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, Recent progress in high entropy alloy research, Jom, 69 (2017) 2024-2031.
    [42] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang, Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 1263-1271.
    [43] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Advanced engineering materials, 10 (2008) 534-538.
    [44] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, 132 (2012) 233-238.
    [45] S. Guo, C. Ng, J. Lu, C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of applied physics, 109 (2011) 103505.
    [46] R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y. Chiu, H. Ding, J. Guo, H. Fu, Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility, Acta Materialia, 144 (2018) 129-137.
    [47] Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today, 19 (2016) 349-362.
    [48] L. Zhang, Z. Jiang, M. Zhang, J. Fan, D. Liu, P. Yu, G. Li, R. Liu, Effect of solid carburization on the surface microstructure and mechanical properties of the equiatomic CoCrFeNi high-entropy alloy, Journal of Alloys and Compounds, 769 (2018) 27-36.
    [49] R.J. Scales, D.E. Armstrong, A.J. Wilkinson, B.-S. Li, On the brittle-to-ductile transition of the as-cast TiVNbTa refractory high-entropy alloy, Materialia, 14 (2020) 100940.
    [50] M.S. Karakaş, A. Günen, C. Çarboğa, Y. Karaca, M. Demir, Y. Altınay, A. Erdoğan, Microstructure, some mechanical properties and tribocorrosion wear behavior of boronized Al0. 07Co1. 26Cr1. 80Fe1. 42Mn1. 35Ni1. 10 high entropy alloy, Journal of Alloys and Compounds, 886 (2021) 161222.
    [51] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, A promising new class of high-temperature alloys: eutectic high-entropy alloys, Scientific reports, 4 (2014) 1-5.
    [52] N.R. Jaladurgam, A. Lozinko, S. Guo, T.-L. Lee, M.H. Colliander, Temperature dependent load partitioning and slip mode transition in a eutectic AlCoCrFeNi2. 1 high entropy alloy, Materialia, 17 (2021) 101118.
    [53] M. Wang, Y. Lu, T. Wang, C. Zhang, Z. Cao, T. Li, P.K. Liaw, A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures, Scripta Materialia, 204 (2021) 114132.
    [54] H. Jiang, D. Qiao, Y. Lu, Z. Ren, Z. Cao, T. Wang, T. Li, Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability, Scripta Materialia, 165 (2019) 145-149.
    [55] A. Munitz, S. Salhov, S. Hayun, N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy, Journal of Alloys and Compounds, 683 (2016) 221-230.
    [56] Y. Fu, J. Li, H. Luo, C. Du, X. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys, Journal of Materials Science & Technology, 80 (2021) 217-233.
    [57] C.V.S. Raju, D. Venugopal, P. Srikanth, K. Lokeshwaran, M. Srinivas, C. Chary, A.A. Kumar, Effect of aluminum addition on the properties of CoCuFeNiTi high entropy alloys, Materials today: Proceedings, 5 (2018) 26823-26828.
    [58] A. Raza, S. Abdulahad, B. Kang, H.J. Ryu, S.H. Hong, Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys, Applied Surface Science, 485 (2019) 368-374.
    [59] C.-H. Tsau, S.-X. Lin, C.-H. Fang, Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys, Materials Chemistry and Physics, 186 (2017) 534-540.
    [60] X. Sun, L. Du, H. Lan, J. Cui, L. Wang, R. Li, Z. Liu, J. Liu, W. Zhang, Mechanical, corrosion and magnetic behavior of a CoFeMn1. 2NiGa0. 8 high entropy alloy, Journal of Materials Science & Technology, 73 (2021) 139-144.
    [61] Q. Wang, A. Amar, C. Jiang, H. Luan, S. Zhao, H. Zhang, G. Le, X. Liu, X. Wang, X. Yang, CoCrFeNiMo0. 2 high entropy alloy by laser melting deposition: Prospective material for low temperature and corrosion resistant applications, Intermetallics, 119 (2020) 106727.
    [62] J. Liu, H. Liu, P. Chen, J. Hao, Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding, Surface and Coatings Technology, 361 (2019) 63-74.
    [63] C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433.
    [64] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51.
    [65] W.-R. Wang, W.-L. Wang, J.-W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, Journal of Alloys and Compounds, 589 (2014) 143-152.
    [66] S. Ma, P. Liaw, M. Gao, J. Qiao, Z. Wang, Y. Zhang, Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer, Journal of Alloys and Compounds, 604 (2014) 331-339.
    [67] R. Li, P. Liaw, Y. Zhang, Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides, Materials Science and Engineering: A, 707 (2017) 668-673.
    [68] P. Ding, A. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, X. Gu, Preparation, characterization and properties of multicomponent AlCoCrFeNi2. 1 powder by gas atomization method, Journal of Alloys and Compounds, 721 (2017) 609-614.
    [69] C. Li, J. Li, M. Zhao, Q. Jiang, Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys, Journal of Alloys and Compounds, 504 (2010) S515-S518.
    [70] M.P. Agustianingrum, U. Lee, N. Park, High-temperature oxidation behaviour of CoCrNi medium-entropy alloy, Corrosion Science, 173 (2020) 108755.
    [71] J. Lu, L. Li, H. Zhang, Y. Chen, L. Luo, X. Zhao, F. Guo, P. Xiao, Oxidation behavior of gas-atomized AlCoCrFeNi high-entropy alloy powder at 900-1100° C, Corrosion Science, 181 (2021) 109257.
    [72] A. Mohanty, J. Sampreeth, O. Bembalge, J. Hascoet, S. Marya, R. Immanuel, S. Panigrahi, High temperature oxidation study of direct laser deposited AlXCoCrFeNi (X= 0.3, 0.7) high entropy alloys, Surface and Coatings Technology, 380 (2019) 125028.
    [73] D. Xiao, P. Zhou, W. Wu, H. Diao, M. Gao, M. Song, P. Liaw, Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr, Ti) high entropy alloys, Materials & Design, 116 (2017) 438-447.
    [74] M. López Ríos, P.P. Socorro Perdomo, I. Voiculescu, V. Geanta, V. Crăciun, I. Boerasu, J.C. Mirza Rosca, Effects of nickel content on the microstructure, microhardness and corrosion behavior of high-entropy AlCoCrFeNix alloys, Scientific reports, 10 (2020) 1-11.
    [75] R.K. Sim, Z. Xu, M. Wu, A. He, D. Chen, D. Li, Microstructure, mechanical properties, corrosion and wear behavior of high-entropy alloy AlCoCrFeNix (x> 0 the) and medium-entropy alloy (x= 0), Journal of Materials Science, 57 (2022) 11949-11968.
    [76] X.-W. Qiu, C.-G. Liu, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding, Journal of Alloys and Compounds, 553 (2013) 216-220.
    [77] A. Meghwal, A. Anupam, B. Murty, C.C. Berndt, R.S. Kottada, A.S.M. Ang, Thermal spray high-entropy alloy coatings: a review, Journal of Thermal Spray Technology, 29 (2020) 857-893.
    [78] S. Chen, Y. Tong, P.K. Liaw, Additive manufacturing of high-entropy alloys: a review, Entropy, 20 (2018) 937.
    [79] T. Fedina, J. Sundqvist, J. Powell, A.F. Kaplan, A comparative study of water and gas atomized low alloy steel powders for additive manufacturing, Additive Manufacturing, 36 (2020) 101675.
    [80] M. Löbel, T. Lindner, C. Kohrt, T. Lampke, Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, pp. 012015.
    [81] C. Si, X. Tang, X. Zhang, J. Wang, W. Wu, Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process, Materials & Design, 118 (2017) 66-74.
    [82] Y. Wu, P.K. Liaw, Y. Zhang, Preparation of bulk TiZrNbMoV and NbTiAlTaV high-entropy alloys by powder sintering, Metals, 11 (2021) 1748.
    [83] P. Wang, P. Huang, F.L. Ng, W.J. Sin, S. Lu, M.L.S. Nai, Z. Dong, J. Wei, Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder, Materials & Design, 168 (2019) 107576.
    [84] C.E. Lyman, D.E. Newbury, J. Goldstein, A.D. Romig Jr, J. Armstrong, P. Echlin, D.B. Williams, D.C. Joy, C. Fiori, E. Lifshin, Scanning electron microscopy, X-ray microanalysis, and analytical electron microscopy: a laboratory workbook, Springer Science & Business Media, 1990.
    [85] J.-T. Liang, K.-C. Cheng, S.-H. Chen, Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders, Journal of Alloys and Compounds, 803 (2019) 484-490.
    [86] K. Lakkam, S.M. Kerur, A. Shirahatti, Effect of pitting corrosion on the mechanical properties of 316 grade stainless steel, Materials today: Proceedings, 27 (2020) 497-502.
    [87] Y.-F. Kao, T.-D. Lee, S.-K. Chen, Y.-S. Chang, Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corrosion Science, 52 (2010) 1026-1034

    QR CODE