簡易檢索 / 詳目顯示

研究生: 陳沛頡
Pei-Chieh Chen
論文名稱: 以常壓輝光放電程序進行電漿-液體交互作用合成奈米銀顆粒之研究
Synthesis of silver nanoparticles by plasma-liquid interaction in atmospheric pressure glow discharge process
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 魏大欽
Da-Qin Wei
楊永欽
Yong-Qin Yang
王丞浩
Cheng-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 116
中文關鍵詞: 常壓輝光放電電漿電解綠色製程含銀離子溶液果糖奈米銀粒子
外文關鍵詞: Atmospheric pressure glow discharge plasma, green processing, Silver-containing Solution, Fructose, Silver nanoparticle
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


目錄 第一章、緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章、文獻回顧 5 2.1 高科技產業電子廢棄物 5 2.1.1 電子廢棄物循環利用與經濟效益 6 2.1.2 傳統電子廢棄物之回收方法 6 2.2 奈米材料簡介 9 2.2.1 奈米材料之特殊效應及性質 11 2.2.2 奈米粒子合成方法 15 2.2.3 分散劑對於奈米粒子之影響 23 2.2.4 奈米材料之應用 25 2.3 常壓輝光放電電漿電解技術 28 2.3.1 輝光放電電解GDE 29 2.3.2 接觸式輝光放電電解CGDE 31 2.4 常壓電漿用於液體電解質之相互作用 33 2.4.1 電漿於液體電解質中之基本反應 34 2.4.2 電漿於液體電解質中合成奈米顆粒 37 第三章、研究方法 45 3.1 實驗規劃 45 3.2 實驗藥品 47 3.2.1 藥品種類 47 3.2.2 藥品配製 48 3.3 實驗設備與分析儀器 49 3.3.1 儀器設備 49 3.3.2 分析儀器 54 第四章、結果與討論 57 4.1 電漿物種檢測分析 58 4.2 含銀離子溶液經電漿還原銀之奈米顆粒酸鹼值變化分析 60 4.3 含銀離子溶液經電漿還原之銀奈米顆粒UV-VIS分析 64 4.4 含銀離子溶液經電漿還原之ICP-OES及回收率分析 68 4.5 含銀離子溶液反應速率常數分析 75 4.6 含銀離子溶液經電漿還原之銀奈米顆粒粒徑分佈 77 4.7 含銀離子溶液經電漿還原之銀奈米顆粒電位分析 82 4.8 含銀離子溶液經電漿還原之銀奈米顆粒SEM、EDS、XRD分析 84 4.9 常壓輝光放電電漿電解用添加果糖之含銀離子溶液之金屬還原機制 90 第五章、結論與未來展望 92 5.1 結論 92 5.2 未來展望 94 第六章、參考文獻 95

[1] 百容電子股份有限公司:半導體導線架-二極體/積體電路/橋式整流器Available:https://reurl.cc/6aK4dV
[2] 人間福報:廢棄NB、手機1年估4470萬公噸 電子垃圾氾濫 環保殺手Available:https://reurl.cc/R0Yx9x
[3] 馬小康,許景翔,「電子廢棄物貴金屬回收再利用之綠循環經濟產業」, 2018.
[4] 馬振基,「奈米材料科技原理與應用」;全華科技圖書: 臺北, 2005. P 1-6~P2-40.
[5] E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews 2009, 38 (6), 1759-1782.
[6] S. K. Sengupta, O. P. Singh, Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolytes. Journal of Electroanalytical Chemistry 1994, 369 (1), 113-120.
[7] 林哲蔚,「常壓電漿高聚能型噴射束製備奈米顆粒之研究」,台灣科技大學機械工程系,碩士論文,2015.
[8] C. N. R. Rao, G. U. Kulkarni, Thomas, P. J. Edwards, P. P. Size-Dependent Chemistry: Properties of Nanocrystals. Chemistry – A European Journal 2002, 8 (1), 28-35.
[9] 倪星元; 沈軍; 張志華「奈米材料的理化特性與應用」; 化學工業出版社: 北京, 2006.
[10] 財團法人中技社,「循環經濟系列叢書: 第三冊 資源及產品 循環應用技術.」,2016.
[11] R. Richards, H. Bönnemann, Synthetic Approaches to Metallic Nanomaterials. Nanofabrication Towards Biomedical Applications 2005, 1-32.
[12] M. T. Reetz, W. Helbig, Size-Selective Synthesis of Nanostructured Transition Metal Clusters. Journal of the American Chemical Society 1994, 116 (16), 7401-7402.
[13] Y. Zhou, S. H. Yu, X. P. Cui, C. Y. Wang, Z. Y. Chen, Formation of Silver Nanowires by a Novel Solid−Liquid Phase Arc Discharge Method. Chemistry of Materials 1999, 11 (3), 545-546.
[14] 廖聖茹,廖世傑,「模板製備奈米結構技術」;奈米技術專刊, 2001
[15] P. M. Ajayan, P. Redlich, M. Ru¨hle, Structure of carbon nanotube-based nanocomposites. Journal of Microscopy 1997, 185 (2), 275-282.
[16] D. Ugarte, A. Châtelain, W. A. de Heer, Nanocapillarity and Chemistry in Carbon Nanotubes. Science 1996, 274 (5294), 1897.
[17] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, , Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chemistry of Materials 2002, 14 (11), 4736-4745.
[18] 黃俊杰,林堅楊「奈米銀材料合成與應用」;中華民國尖端材料科技協會季刊,41期,19-26頁,2015。
[19] C. J. Murphy and N. R. Jana, “ Controlling the aspect ratio of inorganic nanorods and nanowires, ” Adv . Mater . , Vol . 14 , pp . 80-82 ( 2002 ) .
[20] N. R. Jana, L. Gearheart, C. J. Murphy, , Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications 2001, (7), 617-618.
[21] P. Mohanty, I. Yoon, T. Kang, K. Seo, K. S. K. Varadwaj, W. Choi, Q. H. Park, J. P. Ahn, Y. D. Suh, H. Ihee, B. Kim, Simple Vapor-Phase Synthesis of Single-Crystalline Ag Nanowires and Single-Nanowire Surface-Enhanced Raman Scattering. Journal of the American Chemical Society 2007, 129 (31), 9576-9577.
[22] 張哲瑋,「光催化法製備金奈米粒子的研究,」碩士,化學研究所,東海大學,台中市,2010.
[23] F. E. Kruis, H. Fissan,; A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. Journal of Aerosol Science 1998, 29 (5), 511-535.
[24] 陳仁英, 「奈米粉體分散研磨及界面改質技術之探討」, 廣融貿易有限公司
[25] M. Montero, T. Molina, M. Szafran, Moreno, R, Nieto, M. I., Alumina porous nanomaterials obtained by colloidal processing using d-fructose as dispersant and porosity promoter. Ceramics International 2012, 38 (4), 2779-2784.
[26] C. H. Schilling, M. Sikora, P. Tomasik, C. Li, V. Garcia, Rheology of alumina–nanoparticle suspensions: effects of lower saccharides and sugar alcohols. Journal of the European Ceramic Society 2002, 22 (6), 917-921.
[27] P. Falkowski, P. Wiecinska, A. Danelska, T. Mizerski, M. Szafran, Application of Monosaccharides Derivatives in Colloidal Processing of Aluminum Oxide. Journal of The European Ceramic Society - J EUR CERAM SOC 2010, 30, 2805-2811.
[28] S.Nakamura, M. Sato, Y. Sato, N. Ando, T. Takayama, M. Fujita, M. Ishihara, Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. International Journal of Molecular Sciences 2019, 20 (15).
[29] C. You, C. Han, X. Wang, Y. Zheng, Q. Li, X. Hu, Sun H., The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Molecular Biology Reports 2012, 39 (9), 9193-9201.
[30] Hs Ching-Hsiang, UWin Co., L. Nanotech. Anti-bacteria Mechanism and Principle of Silver Nanoparticle Solutio.
[31] S. P. Deshmukh, S. M. Patil, S. B. Mullani, S. D. Delekar, Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C 2019, 97, 954-965.
[32] W. C. Davis, R. K. Marcus, An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Journal of Analytical Atomic Spectrometry 2001, 16 (9), 931-937.
[33] Q. Chen, J. Li, Y. Li, A review of plasma–liquid interactions for nanomaterial synthesis. Journal of Physics D: Applied Physics 2015, 48 (42), 424005.
[34] M. A. Malik, Water Purification by Plasmas: Which Reactors are Most Energy Efficient Plasma Chemistry and Plasma Processing 2010, 30 (1), 21-31.
[35] B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, J. S. Chang, Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment. Industrial & Engineering Chemistry Research 2006, 45 (3), 882-905.
[36] L. Lin, Q. Wang, Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis. Plasma Chemistry and Plasma Processing 2015, 35 (6), 925-962.
[37] A. Hickling, M. D. Ingram, Contact glow-discharge electrolysis. Transactions of the Faraday Society 1964, 60 (0), 783-793.
[38] R. Akolkar and R. M. Sankaran, "Charge transfer processes at the interface between plasmas and liquids," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, no. 5, pp. 050811, 2013.
[39] X.-L. Jin, X.-Y. Wang, H.-M. Zhang, Q. Xia, D.-B. Wei, J.-J. Yue, Influence of Solution Conductivity on Contact Glow Discharge Electrolysis. Plasma Chemistry and Plasma Processing 2010, 30 (3), 429-436.
[40] S.Zeng, D. Baillargeat, H.-P. Ho, K.-T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews 2014, 43 (10), 3426-3452.
[41] T. Verreycken, D. C. Schram, C. Leys, P. Bruggeman, Spectroscopic study of an atmospheric pressure dc glow discharge with a water electrode in atomic and molecular gases. Plasma Sources Science and Technology 2010, 19 (4), 045004.
[42] 蔡昆育,「常壓輝光放電製程於有價金屬循環高值化關鍵技術之研究,」 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018.
[43] 鍾尚元,「常壓輝光放電電解回收處理高值化含銀、銅離子溶液之研究」,國立台灣科技大學機械工程系,碩士論文,2019。
[44] 張皓威,「常壓電漿於黃金溶液之固體金屬還原製程之研究」,國立台灣科技大學機械工程系,碩士論文,2020。
[45] J. Jiang, Z. Tan, C. Shan, J. Pan, G. Pan, Y. Liu, X. Chen, X. Wang, A new study on the penetration of reactive species in their mass transfer processes in water by increasing the electron energy in plasmas. Physics of Plasmas 2016, 23 (10), 103503.
[46] B. B. Sahu, S. B. Jin, J. G. Han, Development and characterization of a multi-electrode cold atmospheric pressure DBD plasma jet aiming plasma application. Journal of Analytical Atomic Spectrometry 2017, 32 (4), 782-795.
[47] T. Ohshima, K. Okuyama, M. Sato, Effect of culture temperature on high-voltage pulse sterilization of Escherichia coli. Journal of Electrostatics 2002, 55 (3), 227-235.
[48] S. Wang, K. Qian, X. Bi, W. Huang, Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure, and Property of Au Colloids. The Journal of Physical Chemistry C 2009, 113 (16), 6505-6510.
[49] A. V. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials. Journal of Applied Physics 2010, 107 (7), 071301.
[50] L. Lin, H. Quoc Pho, L. Zong, S. Li, N. Pourali, E. Rebrov, N. Nghiep Tran, K. Ostrikov, V. Hessel, Microfluidic plasmas: Novel technique for chemistry and chemical engineering. Chemical Engineering Journal 2021, 417, 129355.
[51] B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science 1991, 19 (6), 1063-1077.
[52] K. Baba, T. Kaneko, R. Hatakeyama, Efficient Synthesis of Gold Nanoparticles Using Ion Irradiation in Gas–Liquid Interfacial Plasmas. Applied Physics Express 2009, 2, 035006.
[53] M. Pourbaix, R. W. Staehle, Corrosion and Protection of Iron and Steel. In Lectures on Electrochemical Corrosion, Pourbaix, M.; Staehle, R. W., Eds. Springer US: Boston, MA, 1973; pp 201-295.
[54] A. Fridman, Plasma Chemistry. Cambridge University Press, 2008.
[55] Q. Chen, J. Li, K. Saito, H. Shirai, The characterization of radio-frequency discharge using electrolyte solution as one electrode at atmospheric pressure. Journal of Physics D: Applied Physics 2008, 41 (17), 175212.
[56] P. Bruggeman and C. Leys, "Non-thermal plasmas in and in contact with liquids," Journal of Physics D: Applied Physics, vol. 42, no. 5, pp. 053001, 2009.
[57] P. Lukes, M. Clupek, V. Babicky, V. Janda, P. Sunka, Generation of ozone by pulsed corona discharge over water surface in hybrid gas–liquid electrical discharge reactor. Journal of Physics D: Applied Physics 2005, 38 (3), 409-416.
[58] J. A. LaVerne, H. Yoshida, Production of the hydrated electron in the radiolysis of water with helium ions. The Journal of Physical Chemistry 1993, 97 (41), 10720-10724.
[59] P. Bruggeman, C. Leys, Non-thermal plasmas in and in contact with liquids. Journal of Physics D: Applied Physics 2009, 42 (5), 053001.
[60] J. Gubkin, Electrolytische Metallabscheidung an der freien Oberfläche einer Salzlösung. Annalen der Physik 1887, 268 (9), 114-115.
[61] X. Ma, S. Li, V. Hessel, L. Lin, S. Meskers, F. Gallucci, Synthesis of N-doped carbon dots via a microplasma process. Chemical Engineering Science 2020, 220, 115648.
[62] K. N. Pandiyaraj, D. Vasu, P. V. A. Padmanabhan, R. Ghobeira, P. S. E. Tabaei, P. Cools, N. De Geyter, R. Morent, R. R. Deshmukh, M. Pichumani, Synergetic effect of the catalytic action of plasma jet deposited TiOx coatings and atmospheric pressure plasma treatment on the degradation of RYRR. Surface and Coatings Technology 2020, 389, 125642.
[63] S. A. Meiss, M. Rohnke, L. Kienle, S. Zein El Abedin, F. Endres, J. Janek, Employing Plasmas as Gaseous Electrodes at the Free Surface of Ionic Liquids: Deposition of Nanocrystalline Silver Particles. ChemPhysChem 2007, 8 (1), 50-53.
[64] B. F. Leo, S. Chen, Y. Kyo, K.-L. Herpoldt, N. J. Terrill, I. E. Dunlop, D. S. McPhail, M. S. Shaffer, S. Schwander, A. Gow, J. Zhang, K. F. Chung, T. D. Tetley, A. E. Porter, M. P. Ryan, The Stability of Silver Nanoparticles in a Model of Pulmonary Surfactant. Environmental Science & Technology 2013, 47 (19), 11232-11240.
[65] S. P. Deshmukh, S. M. Patil, S. B. Mullani, S. D. Delekar, Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C 2019, 97, 954-965.
[66] C.-H. Wang, T.-E. Hua, C.-C. Chien, Y.-L. Yu, T.-Y. Yang, C.-J. Liu, W.-H. Leng, Y. Hwu, Y.-C. Yang, C.-C. Kim, J.-H. Je, C.-H. Chen, H.-M. Lin,; Margaritondo, G., Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction. Materials Chemistry and Physics 2007, 106 (2), 323-329.
[67] Y.-C. Yang, C.-H. Wang, Y.-K. Hwu, J.-H. Je, Synchrotron X-ray synthesis of colloidal gold particles for drug delivery. Materials Chemistry and Physics 2006, 100 (1), 72-76.
[68] J. Hieda, N. Saito, O. Takai, , Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. Journal of Vacuum Science & Technology A 2008, 26 (4), 854-856.
[69] G. V. Buxton, Radiation chemistry of the liquid state. VCH Publishers Inc: United States, 1987.
[70] J. V. Zoval, R. M. Stiger, P. R. Biernacki, R. M. Penner, Electrochemical Deposition of Silver Nanocrystallites on the Atomically Smooth Graphite Basal Plane. The Journal of Physical Chemistry 1996, 100 (2), 837-844.
[71] S. R. Nie, Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275 (5303), 1102.
[72] E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews 2009, 38 (6), 1759-1782.
[73] M.-C. Daniel, D. Astruc, Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews 2004, 104 (1), 293-346.
[74] X. Z. Huang, X. X. Zhong, Y. Lu, Y. S. Li, A. E. Rider, S. A. Furman, K. Ostrikov, Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnology 2013, 24 (9), 095604.
[75] X. Huang, Y. Li, X. Zhong, Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry. Nanoscale Research Letters 2014, 9 (1), 572.
[76] R. Wang, S. Zuo, W. Zhu, J. Zhang, and J. Fang, "Rapid Synthesis of Aqueous Phase Magnetite Nanoparticles by Atmospheric Pressure NonThermal Microplasma and their Application in Magnetic Resonance Imaging," Plasma Processes and Polymers, vol. 11, no. 5, pp. 448-454, 2014.
[77] C. Du, M. Xiao, Cu2O nanoparticles synthesis by microplasma. Scientific Reports 2014, 4 (1), 7339.
[78] Y. L. Thong, O. H. Chin, B. H. Ong, N. M. Huang, Synthesis of silver nanoparticles prepared in aqueous solutions using helium dc microplasma jet. Japanese Journal of Applied Physics 2015, 55 (1S), 01AE19.
[79] C. Richmonds, R. M. Sankaran, Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters 2008, 93 (13), 131501.
[80] A. J. B. L. R. Faulkner, ELECTROCHEMICAL METHODS Fundamentals and Applications. Department of Chemistry and Biochemistry University of Texas at Austin.

無法下載圖示 全文公開日期 2026/08/27 (校內網路)
全文公開日期 2026/08/27 (校外網路)
全文公開日期 2026/08/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE