簡易檢索 / 詳目顯示

研究生: 陳昱仁
Yu-Ren Chen
論文名稱: 超音波振動輔助繞切玻璃纖維蜂巢複材之切削力與材料表面完整性研究
Cutting forces and machined surface integrity in routing of glass fiber honeycomb composites using ultrasonic vibration-assisting energy
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 劉孟昆
Mneg-Kun Liu
何羽健
Yu-Chien Ho
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 96
中文關鍵詞: 玻璃纖維蜂窩巢複合材料超音波輔助能繞切加工切削力切削溫度刀具磨耗加工表面完整性電腦斷層掃描
外文關鍵詞: Glass fiber honeycomb composite, Ultrasonic vibration-assisted energy, Routing, Cutting force, Cutting temperature, Tool wear, Machined surface integrity, Computed tomography
相關次數: 點閱:379下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

玻璃纖維蜂巢複合材料優異之比強度(22.66−78.00 kN∙m/kg)與比剛性(2,111−18,538 kN∙m/kg),可應用於高負載之機構零件。此外,良好之剪力強度(0.28−4.99 MPa)與剪力模數(0.02−0.99 GPa),則適用於潰縮結構之被動安全設計。雖然如此,玻璃纖維蜂巢複合材料於實務應用上為一難切削材料。蜂巢結構之幾何不連續及可潰縮特性,常造成切刃與蜂巢結構接觸之幾何變化。當切削型態由剪切轉變為摩擦,促成刀具磨耗加劇、纖維拉出與加工表面產生裂縫。本研究使用超音波振動輔助繞切蜂巢複材,透過氮化鋯鍍層之二水準刀具幾何(直刃與螺旋刃)、三水準之切削速度(30、60與90 m/min)及四水準之振幅(0、6、9與12 μm),於固定之頻率27 kHz及進給率0.5 mm/rev繞切玻璃纖維蜂窩巢複合材料,預期降低切削力、切削溫度、刀具磨耗與改善加工表面完整性。此外,透過電腦斷層掃瞄觀察材料之內部損傷。研究顯示,相較於傳統加工,直刃刀具於振幅12 μm搭配三水準切削速度,製造之Fx與Fy切削力較傳統加工分別降低~31.53%與37.04%,並產生與傳統相當之切削溫度(~33.3℃)、刀具磨耗(VB 15.7μm)及纖維拉出長度值(~455.4 μm)。此外,當切削速度為30 m/min配合振幅12 μm產生之內部損傷比起無超音波振動輔助降低70.6%。然而於蜂巢節點左側,發現大面積之基底材料損失與裂縫之形成。另一方面,螺旋刃刀具搭配超音波振動輔助繞切,所製造之切削力與材料內部損傷皆劣於傳統加工所製造,並討論與表面完整性之關聯。


Glass fiber honeycomb composite materials have excellent specific strength (22.66−78.00 kN∙m/kg) and specific stiffness (2,111−18,538 kN∙m/kg) for heavy-duty applications whilst their moderate shear strength (0.28−4.99 MPa) and shear modulus (0.02−0.99 GPa) are suitable for crush worth design. However, vibrations and chattering are often exerted in cutting due to their discontinuity on geometric changes and crashworthy characteristics. Hence, the glass fiber honeycomb composite materials are classified to the difficult-to-cut materials.
In this study, experimental evaluations of cutting forces and the degraded machined surface integrity were carried out for the observations of cutting force, cutting temperature, tool wear, machined surface integrity and internal damage in routing of honeycomb composite materials. In the parametric investigation, the effects of the ultrasonic vibration-assisted energy coupling with cutting energy in routing of glass fiber honeycomb composites were studied and analysed, with tool geometry (straight-flute and helical-flute), cutting speeds (30, 60 and 90 m/min) and amplitudes (0, 6, 9 and 12 μm), under a constant frequency of 27 kHz and a feed rate of 0.5 mm/rev. Furthermore, computed tomography (CT) was exhibited to demonstrate the influences of cutting forces to the internal damages in a non-destructive manner.
The results showed reductions of cutting forces, 31.53% and 37.04% for the Fx and Fy respectively, and remaining the same level of cutting temperature by using straight flute router, compared to that in the conventional machining. Similarly, the fiber pull-out lengths of ~455.4 μm and 418.0 μm on the machined double and single walls were respectively reduced, compared to that without using ultrasonic energy. In particular, when the cutting speed is 30 m/min and the amplitude is 12 μm, the internal damage generated is 70.6% lower than that without ultrasonic vibration-assisting energy. However, on the entrance point of the honeycomb node, a large area of loss of matrix material and the formation of cracks were encountered. In the observations of computed tomography, the internal damages in the node points, single and double walls which produced by the helical flute router with ultrasonic vibration-assisted routing, were inferior to those produced by conventional machining. The damages associated with crack width and depth have been presented and reported.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 符號定義 XIV 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 研究背景 3 2.2 蜂窩巢材料 3 2.3 刀具材料 5 2.4 超音波加工之優勢與劣勢 6 2.5 切削參數與超音波參數的關係與交互作用 8 2.6 加工表面特徵化方法 9 2.7 繞切蜂窩巢材料之成型與挑戰 11 第三章 研究方法 13 3.1 研究流程 13 3.2 超音波作功 15 3.3 超音波振動輔助加工系統 16 3.4 超音波振動之簡諧運動 17 3.5 刀長與超音波頻率振幅之關係 19 第四章 實驗工作 23 4.1 實驗材料 23 4.2 實驗刀具 24 4.3 實驗設置 26 4.4 數據取樣 27 4.4.1 切削力訊號之量測 27 4.4.2 切削溫度之量測 28 4.4.3 刀具磨耗之量測 29 4.4.4 表面缺陷量測 30 4.4.5 材料內部損傷 32 4.5 實驗設計 34 4.5.1 Phase A 主流測試 34 4.5.2 Phase B 對照組 35 第五章 實驗結果與討論 36 5.1 切削力分析 36 5.1.1 直刃刀具於切削速度與振幅之效應 36 5.1.2 螺旋刃於切削速度與振幅之效應 41 5.1.3 全因子實驗之參數檢定與分析 46 5.2 切削溫度分析 48 5.2.1 切削速度與振幅之效應 48 5.2.2 全因子實驗之參數檢定與分析 52 5.3 切削參數對於刀具磨耗之顯微組織 54 5.4 加工表面完整性 57 5.4.1 直刃刀具與切削參數產生之毛邊 57 5.4.2 螺旋刃刀具與切削參數產生之毛邊 61 5.4.3 加工次表面之顯微組織 65 5.4.4 加工次表面與內部之裂縫 69 第六章 結論與未來展望 79 6.1 文獻回顧總結 79 6.2 研究結果總結 80 6.3 未來展望 85 參考文獻 86 附錄一 學術榮譽與研究著作 94 附錄二 CNC 程式碼 96

[1] Chapman, H. Staff, G. Lubin, S.T. Peters, Handbook of Composites, Springer US, 1998.
[2] T.N. Bitzer, Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing, Springer Netherlands, 2012.
[3] D.B. Miracle, S.L. Donaldson, ASM Handbook, Volume 21 - Composites, ASM International.
[4] The Boeing 367-80 International Historic Mechanical Engineering Landmark, American Society of Mechanical Engineers, 1994.
[5] R.B. Heslehurst, Defects and Damage in Composite Materials and Structures, CRC Press, 2014.
[6] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, 1999.
[7] F. Klocke, A. Kuchle, Manufacturing Processes 1: Cutting, Springer Berlin Heidelberg, 2011.
[8] P.K. Wright, E.M. Trent, Metal Cutting, Elsevier Science, 2000.
[9] M. Nastasi, P. Kodali, K.C. Walter, J.D. Embury, R. Raj, Y. Nakamura, Fracture toughness of diamondlike carbon coatings, Journal of Materials Research, 14 (2011) 2173-2180.
[10] M. Ziberov, D. de Oliveira, M.B. da Silva, W.N.P. Hung, Wear of TiAlN and DLC coated microtools in micromilling of Ti-6Al-4V alloy, Journal of Manufacturing Processes, 56 (2020) 337-349.
[11] Y.-S. Liao, T.-C. Lin, C.-Y. Lai, Y.-L. Chen, H.-H. Chang, C.-P. Lin, Cutting performance of diamond-like carbon coated tips in ultrasonic osteotomy, Journal of Dental Sciences, 9 (2014) 63-68.
[12] C.A. Griffiths, A. Rees, R.M. Kerton, O.V. Fonseca, Temperature effects on DLC coated micro moulds, Surface and Coatings Technology, 307 (2016) 28-37.
[13] C. Kuo, J. Liu, T. Chang, S. Ko, The effects of cutting conditions and tool geometry on mechanics, tool wear and machined surface integrity when routing CFRP composites, Journal of Manufacturing Processes, 64 (2021) 113-129.
[14] J.-H. Kim, G.Y. Jeong, S. Kim, Y.J. Jeong, D.-S. Sohn, Effect of coating thickness and annealing temperature on ZrN coating failure of U-Mo particles under heat treatment, Journal of Nuclear Materials, 507 (2018) 347-359.
[15] A. Vereschaka, V. Gurin, M. Oganyan, G. Oganyan, J. Bublikov, A. Shein, Increase in tool life for end milling titanium alloys using tools with multilayer composite nanostructured modified coatings, Procedia CIRP, 81 (2019) 1412-1416.
[16] J. Adachi, K. Kurosaki, M. Uno, S. Yamanaka, Thermal and electrical properties of zirconium nitride, Journal of Alloys and Compounds, 399 (2005) 242-244.
[17] G. López, M.H. Staia, High-temperature tribological characterization of zirconium nitride coatings, Surface and Coatings Technology, 200 (2005) 2092-2099.
[18] C.-S. Chen, C.-P. Liu, C.Y.A. Tsao, H.-G. Yang, Study of mechanical properties of PVD ZrN films, deposited under positive and negative substrate bias conditions, Scripta Materialia, 51 (2004) 715-719.
[19] D. Jianxin, L. Jianhua, Z. Jinlong, S. Wenlong, N. Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear, 264 (2008) 298-307.
[20] M.N. Durakbasa, A. Akdogan, A.S. Vanli, A.G. Bulutsuz, Optimization of end milling parameters and determination of the effects of edge profile for high surface quality of AISI H13 steel by using precise and fast measurements, Measurement, 68 (2015) 92-99.
[21] A.T. Erturk, F. Vatansever, E. Yarar, E.A. Guven, T. Sinmazcelik, Effects of cutting temperature and process optimization in drilling of GFRP composites, Journal of Composite Materials, 55 (2020) 235-249.
[22] J.-Y. Hwang, D.-G. Ahn, Effects of carbide substrate properties and diamond coating morphology on drilling performance of CFRP composite, Journal of Manufacturing Processes, 58 (2020) 1274-1284.
[23] M. Li, S. Soo, D. Aspinwall, W. Leahy, Study on tool wear and workpiece surface integrity following drilling of CFRP laminates with variable feed rate strategy, Procedia CIRP, 71 (2018) 407-412.
[24] N. Khanna, F. Pusavec, C. Agrawal, G.M. Krolczyk, Measurement and evaluation of hole attributes for drilling CFRP composites using an indigenously developed cryogenic machining facility, Measurement, 154 (2020).
[25] C. Kuo, C. Wang, S. Ko, Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites, Wear, 398-399 (2018) 1-12.
[26] N. Nguyen-Dinh, R. Zitoune, C. Bouvet, S. Leroux, Surface integrity while trimming of composite structures: X-ray tomography analysis, Composite Structures, 210 (2019) 735-746.
[27] M. Haddad, R. Zitoune, F. Eyma, B. Castanie, Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range, Composites Part A: Applied Science and Manufacturing, 66 (2014) 142-154.
[28] D. Geng, Y. Liu, Z. Shao, M. Zhang, X. Jiang, D. Zhang, Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP, Composites Part B: Engineering, 183 (2020).
[29] N.F.H.A. Halim, H. Ascroft, S. Barnes, Analysis of Tool Wear, Cutting Force, Surface Roughness and Machining Temperature During Finishing Operation of Ultrasonic Assisted Milling (UAM) of Carbon Fibre Reinforced Plastic (CFRP), Procedia Engineering, 184 (2017) 185-191.
[30] Z. Li, D. Zhang, W. Qin, D. Geng, Feasibility study on the rotary ultrasonic elliptical machining for countersinking of carbon fiber–reinforced plastics, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231 (2016) 2347-2358.
[31] D. Geng, D. Zhang, Y. Xu, F. He, D. Liu, Z. Duan, Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity, Ultrasonics, 59 (2015) 128-137.
[32] A.H.N.F. Huda, H. Ascroft, S. Barnes, Machinability Study of Ultrasonic Assisted Machining (UAM) of Carbon Fibre Reinforced Plastic (CFRP) with Multifaceted Tool, Procedia CIRP, 46 (2016) 488-491.
[33] Y. Liu, Q. Li, Z. Qi, W. Chen, Defect suppression mechanism and experimental study on longitudinal torsional coupled rotary ultrasonic assisted drilling of CFRPs, Journal of Manufacturing Processes, 70 (2021) 177-192.
[34] D.-y. Zhang, X.-j. Feng, L.-j. Wang, D.-c. Chen, Study on the drill skidding motion in ultrasonic vibration microdrilling, International Journal of Machine Tools and Manufacture, 34 (1994) 847–857.
[35] J. Sun, Z. Dong, X. Wang, Y. Wang, Y. Qin, R. Kang, Simulation and experimental study of ultrasonic cutting for aluminum honeycomb by disc cutter, Ultrasonics, 103 (2020) 106102.
[36] S. Ahmad, J. Zhang, P. Feng, D. Yu, Z. Wu, Experimental study on rotary ultrasonic machining (RUM) characteristics of Nomex honeycomb composites (NHCs) by circular knife cutting tools, Journal of Manufacturing Processes, 58 (2020) 524-535.
[37] N. Geier, T. Szalay, Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP), Measurement, 110 (2017) 319-334.
[38] C.L. Kuo, S.L. Soo, D.K. Aspinwall, C. Carr, S. Bradley, R. M’Saoubi, W. Leahy, Development of single step drilling technology for multilayer metallic-composite stacks using uncoated and PVD coated carbide tools, Journal of Manufacturing Processes, 31 (2018) 286-300.
[39] R. Voss, L. Seeholzer, F. Kuster, K. Wegener, Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP, CIRP Journal of Manufacturing Science and Technology, 18 (2017) 75-91.
[40] O. Çolak, T. Sunar, Cutting Forces and 3D Surface Analysis of CFRP Milling with PCD Cutting Tools, Procedia CIRP, 45 (2016) 75-78.
[41] E. Dilonardo, M. Nacucchi, F. De Pascalis, M. Zarrelli, C. Giannini, High resolution X-ray computed tomography: A versatile non-destructive tool to characterize CFRP-based aircraft composite elements, Composites Science and Technology, 192 (2020).
[42] D. Kumar, S. Gururaja, I.S. Jawahir, Machinability and surface integrity of adhesively bonded Ti/CFRP/Ti hybrid composite laminates under dry and cryogenic conditions, Journal of Manufacturing Processes, 58 (2020) 1075-1087.
[43] A.G. Stamopoulos, K.I. Tserpes, S.G. Pantelakis, Multiscale finite element prediction of shear and flexural properties of porous CFRP laminates utilizing X-ray CT data, Theoretical and Applied Fracture Mechanics, 97 (2018) 303-313.
[44] S. Carmignato, W. Dewulf, R. Leach, Industrial X-Ray Computed Tomography, Springer International Publishing, 2017.
[45] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Pearson, 2018.
[46] P. Russo, Handbook of X-ray Imaging: Physics and Technology, CRC Press, 2017.
[47] D. Liu, S. Wang, J. Wang, The effect of CT high-resolution imaging diagnosis based on deep residual network on the pathology of bladder cancer classification and staging, Comput Methods Programs Biomed, 215 (2022) 106635.
[48] H. Chen, X. He, H. Yang, J. Feng, Q. Teng, A two-stage deep generative adversarial quality enhancement network for real-world 3D CT images, Expert Systems with Applications, 193 (2022).
[49] B. Yang, H. Wang, Y. Chen, K. Fu, Y. Li, Experimental evaluation and modelling of drilling responses in CFRP/honeycomb composite sandwich panels, Thin-Walled Structures, 169 (2021).
[50] L. Pejryd, T. Beno, S. Carmignato, Computed Tomography as a Tool for Examining Surface Integrity in Drilled Holes in CFRP Composites, Procedia CIRP, 13 (2014) 43-48.
[51] N. Kawasegi, Evaluation of internal defects generated in machine milled carbon fiber reinforced plastic using X-ray computed tomography, Precision Engineering, 60 (2019) 257-264.
[52] K. Qiu, W. Ming, L. Shen, Q. An, M. Chen, Study on the cutting force in machining of aluminum honeycomb core material, Composite Structures, 164 (2017) 58-67.
[53] Q. An, J. Dang, W. Ming, K. Qiu, M. Chen, Experimental and Numerical Studies on Defect Characteristics During Milling of Aluminum Honeycomb Core, Journal of Manufacturing Science and Engineering, 141 (2019).
[54] Y. Wang, Y. Gan, H. Liu, L. Han, J. Wang, K. Liu, Surface Quality Improvement in Machining an Aluminum Honeycomb by Ice Fixation, Chinese Journal of Mechanical Engineering, 33 (2020).
[55] M. Jaafar, M. Nouari, H. Makich, A. Moufki, 3D numerical modeling and experimental validation of machining Nomex® honeycomb materials, The International Journal of Advanced Manufacturing Technology, 115 (2021) 2853-2872.
[56] M. Jaafar, H. Makich, M. Nouari, A new criterion to evaluate the machined surface quality of the Nomex® honeycomb materials, Journal of Manufacturing Processes, 69 (2021) 567-582.
[57] X.P. Hu, B.H. Yu, X.Y. Li, N.C. Chen, Research on Cutting Force Model of Triangular Blade for Ultrasonic Assisted Cutting Honeycomb Composites, Procedia CIRP, 66 (2017) 159-163.
[58] Y. Wang, R. Kang, Y. Qin, Q. Meng, Z. Dong, Effects of inclination angles of disc cutter on machining quality of Nomex honeycomb core in ultrasonic cutting, Frontiers of Mechanical Engineering, 16 (2021) 285-297.
[59] D.-H. Xiang, B.-F. Wu, Y.-L. Yao, B. Zhao, J.-Y. Tang, Ultrasonic Vibration Assisted Cutting of Nomex Honeycomb Core Materials, International Journal of Precision Engineering and Manufacturing, 20 (2019) 27-36.
[60] Y. Yao, Y. Pan, S. Liu, Power ultrasound and its applications: A state-of-the-art review, Ultrason Sonochem, 62 (2020) 104722.
[61] Y.Y. Kim, Y.E. Kwon, Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides, Ultrasonics, 62 (2015) 3-19.
[62] T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, Review on ultrasonic machining, International Journal of Machine Tools and Manufacture, 38 (1998) 239-255.
[63] Y.-J. Choi, K.-H. Park, Y.-H. Hong, K.-T. Kim, S.-W. Lee, H.-Z. Choi, Effect of ultrasonic vibration in grinding; horn design and experiment, International Journal of Precision Engineering and Manufacturing, 14 (2013) 1873-1879.
[64] K. Nakamura, Ultrasonic Transducers: Materials and Design for Sensors, Actuators and Medical Applications, Elsevier Science, 2012.
[65] 張廷宇, 玻璃纖維蜂窩巢複合材料之切削理論與實務研究, 碩士論文, 國立臺灣科技大學機械工程系, 台北, 2020.
[66] Boeing Nonmetallic honeycomb core BMS 8-124AD, 2015.
[67] J. Ahmad, Machining of Polymer Composites, Springer US, 2009.
[68] R. Sreenivasulu, Influence of Zinc Oxide and Silicon Carbide Micro fillers on Impact Strength and Hardness in E-Glass/Polyester Composites: Fabrication and Testing.
[69] A.G. Mamalis, S. Romaniuk, T. Skoblo, A. Baturin, V. Starikov, R. Muratov, V. Taran, I. Garkusha, A. Taran, Structure and properties of nanostructured ZrN coatings obtained by vacuum-arcevaporation using RF discharge, Nanotechnology Perceptions, 14 (2018) 167-177.

無法下載圖示 全文公開日期 2024/07/18 (校內網路)
全文公開日期 2024/07/18 (校外網路)
全文公開日期 2024/07/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE