簡易檢索 / 詳目顯示

研究生: 蔡宜潔
Yi-Jie Cai
論文名稱: 合成疏水且具最佳導電率的TEMPO氧化奈米纖維素薄膜
Synthesis of Hydrophobic TEMPO-oxidized Cellulose Nanofiber Film with Available Conductivity
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 吳昌謀
Chang-Mou Wu
氏原真數
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 46
中文關鍵詞: 氧化奈米纖維素薄膜
外文關鍵詞: TEMPO-oxidized Cellulose Nanofiber Film
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,疏水2,2,6,6-四甲基-1-哌啶氧自由基(TEMPO)-氧化纖維素奈米纖維凝膠通過醯胺化方式製備而成,再加入ZnO nws ,ZnO nps ,carbon dots ,使其凝膠具有電容性,進而合成出具有電容性的疏水2,2,6,6-四甲基-1-哌啶氧自由基(TEMPO)-氧化纖維素奈米纖維薄膜。通過傅立葉轉換紅外光譜、紫外線可見光透射率、接觸角和在水中的穩定性來確認膜的改性、光學性質、疏水性和電容的效果。膜的透射率從87%降低至41%,加入ZnO nws ,ZnO nps ,carbon dots 後透射率從85%降低至10%以下,然而電容度卻有所提升,加入ZnO NW 的輸水膜擁有最低的電阻優勢,而加入ZnO接觸角也有所上升,表明疏水性增加且膜在水中變得非常穩定。因此,這些結果表明成功地合成耐水和疏水且具電容度的纖維素膜。


    In the thesis, the hydrophobic film which has the best conductivity was synthesize.
    The hydrophobic 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO)-oxidized cellulose nanofiber gel was prepared by amidation reaction. Then different ratio of ZnO nanowires, ZnO nanoparticles and Carbon dots were added to find the best conductive film which has hydrophobic property.
    The modification, optical property, hydrophobicity and conductivity property of the films were confirmed with Fourier transform infrared absorption, ultraviolet-visible transmittance, contact angle, stability in water and electrochemical impedance spectroscopic measurements. After adding ZnO nanowire, ZnO Nanoparticle and carbon dots, the transmittance decreased from 85% to less than 10%. However, lifetime of an electron in films which embedded ZnO and carbon dots increased. The film with ZnO nanowires had the longer lifetime of an electron. It means the film embed ZnO nanowire has larger charge transfer and better conductivity. The contact angle of films increased after adding the ZnO, indicating the increase of the hydrophobicity. Then, the films were very stable in water. Thus, these results indicate that water resistant, hydrophobic and conductive cellulose film was successfully synthesized by adding ZnO.

    Abstract I 摘要 II Acknowledgement III Table of Contents IV List of Figures VI List of Tables VIII Chapter 1: Introduction 1 1.1 Green-based nanomaterial 1 1.1.1 Cellulose as Sustainable Material 2 1.1.2 Mechanical treatment to produce CNF 3 1.2 Hydrophobic surface 3 1.3 Conductivity property 6 1.3.1 Zinc oxide 6 1.3.2 Zinc oxide nanostructure 6 1.3.3 Application of Zinc oxide nanostructure 7 1.3.4 Carbon Dots (CDs) 7 1.3.5 Application of Carbon Dots (CDs) 8 1.4 Motivation and objective of the work 8 Chapter 2: Experimental Section 10 2.1 Materials 10 2.2 Synthesis Procedure 11 2.2.1 Preparation of TEMPO-oxidized cellulose gel 11 2.2.2 Preparation of TEMPO-oxidized cellulose nanofiber (TOCNF) 11 2.2.3 Quantitative determination of carboxyl content 13 2.2.4 Preparation of ZnO nanowire (ZnO nw) powder 13 2.2.5 Preparation of ZnO nanoparticle (ZnO np) powder 13 2.2.6 Preparation of Carbon dots (Cdots) 13 2.3 Modification of TOCNF film 14 2.3.1 Synthesis of hydrophobic TOCNF film by amidation reaction with alkylamine 14 2.3.2 Synthesis of C8 –amide TOCNF film containing ZnO nws 16 2.3.3 Synthesis of T C8 –amide TOCNF film containing ZnO nws and ZnO nps 16 2.3.4 Synthesis of C8 –amide TOCNF film containing ZnO nws and Carbon dots 16 2.4 Characterization techniques 16 Chapter 3 Results and Discussion 18 3.1 Preparation of TEMPO oxidized cellulose nanofiber 18 3.2 Fourier Transform Infrared (FTIR) Absorption Spectroscopy 21 3.3 Transparency of films 24 3.4 Hydrophobic behavior of modified C8-amide TOCNF films 28 3.4.1 Stability in water 28 3.4.2 Contact angle 30 3.5 EIS measurement of modified-TOCNF films 32 Chapter 4 Conclusion 36

    [1] A. F. Turbak, F. W. Snyder, and K. R. Sandberg, "Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential," in J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States), 1983, vol. 37, no. CONF- 8205234-Vol. 2: ITT Rayonier Inc., Shelton, WA.
    [2] D. R. Paul and L. M. J. P. Robeson, "Polymer nanotechnology: nanocomposites," vol. 49, no. 15, pp. 3187-3204, 2008.
    [3] H. Wondraczek and T. Heinze, "Cellulosic Biomaterials," in Polysaccharides: Bioactivity and Biotechnology, K. G. Ramawat and J.-M. Mérillon, Eds. Cham: Springer International Publishing, 2015, pp. 289-328.
    [4] D. M. Updegraff, "SEMIMICRO DETERMINATION OF CELLULOSE IN BIOLOGICAL MATERIALS," (in English), Analytical Biochemistry, Article vol. 32, no. 3, pp. 420-+, 1969.
    [5] Y. Habibi, L. A. Lucia, and O. J. Rojas, "Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications," (in English), Chemical Reviews, Review vol. 110, no. 6, pp. 3479-3500, Jun 2010.
    [6] X. M. Dong, J. F. Revol, and D. G. Gray, "Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose," (in English), Cellulose, Article vol. 5, no. 1, pp. 19-32, Mar 1998.
    [7] M. Henriksson, G. Henriksson, L. A. Berglund, and T. Lindstrom, "An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers," (in English), European Polymer Journal, Article vol. 43, no. 8, pp. 3434-3441, Aug 2007.
    [8] L. Wagberg, G. Decher, M. Norgren, T. Lindstrom, M. Ankerfors, and K. Axnas, "The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes," (in English), Langmuir, Article vol. 24, no. 3, pp. 784-795, Feb 2008.
    [9] A. Isogai, T. Saito, and H. J. n. Fukuzumi, "TEMPO-oxidized cellulose nanofibers," vol. 3, no. 1, pp. 71-85, 2011.
    [10] C. H. Xue, S. T. Jia, J. Zhang, and J. Z. Ma, "Large-area fabrication of superhydrophobic surfaces for practical applications: an overview," (in English), Science and Technology of Advanced Materials, Review vol. 11, no. 3, p. 15, Jun 2010, Art. no. 033002.
    [11] W. Barthlott and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," (in English), Planta, Article vol. 202, no. 1, pp. 1-8, May 1997.
    [12] W. Thielicke, "Computer graphic of a lotus leaf surface," 2007.
    [13] Jaison Jeevanandam, Ahmed Barhoum, “Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations”, Beilstein J Nanotechnol, pp.1050-1074, Apr. 2018
    [14] Zhong LinWang, “Nanostructures of zinc oxide”, materialstoday, vol.7 issue 6 pp.26-23, June. 2004
    [15] Karoliina Junka, Jiaqi Guo, lari Filpponen, Janne Laine, and Orlando J. Rojas "Modification of Cellulose Nanofibrils with Luminescent Carbon Dots" Biomacromolecules 2014, 15, 3, 876–881
    [16] Li, H.; Kang, Z.; Liu, Y.; Lee, S. J. Mater. Chem. 2012, 22, 24230−24253
    [17] Qu, S.; Chen, X.; Cao, J.; Liu, X. Nanoscale 2013, 5, 5514−5518.
    [18] Goh, E. J.; Kim, K. S.; Kim, Y. R.; Jung, H. S.; Beack, S.; Kong, W. H.; Scarcelli, G.; Yun, S. H.; Hahn, S. K. Biomacromolecules 2012, 13, 2554−2561.
    [19] R. Bendi and T. J. R. A. Imae, "Renewable catalyst with Cu nanoparticles embedded into cellulose nano-fiber film," vol. 3, no. 37, pp. 16279-16282, 2013.
    [20] D. D. Perez, S. Montanari, and M. R. Vignon, "TEMPO-mediated oxidation of cellulose III," (in English), Biomacromolecules, Article vol. 4, no. 5, pp. 1417-1425, Sep-Oct 2003.
    [21] K. J. Shah and T. Imae, "Photoinduced enzymatic conversion of CO2 gas to solar fuel on functional cellulose nanofiber films," (in English), Journal of Materials Chemistry A, Article vol. 5, no. 20, pp. 9691-9701, May 2017.
    [22] M. T. Efa, T. Imae, "Hybridization of carbon-dots with ZnO nanoparticles of different size" J. Taiwan Inst. Chem. Eng. 2018, 92, 112
    [23] Y Song, S Xiang, X Zhao, J Zhao, H Zhang, Yu Fu, and Bai Yang "Investigation into the fluorescence quenching behaviors and applications of carbon dots" Nanoscale 4676-4682, 2014 6
    [24] E. Lasseuguette, "Grafting onto microfibrils of native cellulose," Cellulose, vol. 15, no. 4, pp. 571-580, 2008/08/01 2008.
    [25] A. Benkaddour, C. Journoux-Lapp, K. Jradi, S. Robert, and C. J. J. o. m. s. Daneault, "Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: amidation and esterification process," vol. 49, no. 7, pp. 2832-2843, 2014.
    [26] MA, YU-CHINE "synthesis of hydrophobic TEMPO-oxidized cellulose nanofiber film" 2020/07/17
    [27] J. M. Antosiewicz and D. Shugar, "UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications," (in eng), Biophysical reviews, vol. 8, no. 2, pp. 163-177, 2016.

    無法下載圖示
    全文公開日期 2051/08/02 (校外網路)
    全文公開日期 2051/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE