簡易檢索 / 詳目顯示

研究生: 林承德
Cheng-De Lin
論文名稱: 氧化石墨烯濃度對以親和吸附作用製備細菌視紫質光電晶片之影響
Concentration effect of graphene oxide on affinity-prepared bacteriorhodospin photoelectric chip
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 江偉宏
Wei-Hung Chiang
趙玲
Ling Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 93
中文關鍵詞: 細菌視紫質紫膜晶片氧化石墨烯
外文關鍵詞: bacteriorhodopsin, purple membrane chip, graphene oxide
相關次數: 點閱:281下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氧化石墨烯(graphene oxide, GO)具獨特的材料特性,為近年來的研究焦點。紫膜(purple membrane, PM)為Halobacterium salinarum嗜鹽古菌的細胞膜,其內的細菌視紫質(bacteriorhodopsin)蛋白具有光驅動單方向質子泵功能。本研究將GO應用於PM生物晶片技術上,並以水滴接觸角、微分光電流、脈衝雷射光電流、傅立葉轉換紅外光譜、蛋白質定量、螢光分析等分析進行探討其影響。先在經過自排性單分子膜胺基化的ITO玻璃上塗覆活化avidin或與GO之混合物,再以生物性親和吸附作用將經biotin修飾的PM(b-PM)固定化。水滴接觸角會從清潔後的ITO表面5 - 8 °增加至自排性單分子膜的約30 °,再塗覆上活化avidin或與GO之混合物後上升到約65 °,但隨著GO添加濃度的增加,接觸角會緩緩下降至15 °左右,顯示GO可增加晶片表面的親水性;成功塗覆b-PM後的水滴接觸角則維持在30 °左右。GO的微量添加對晶片的微分光電流影響不大,但GO濃度增加至臨界濃度時,光電流則幾乎完全喪失,僅剩餘約5 %。以脈衝雷射激發PM晶片,發現GO存在時,B1訊號強度及成功被激發的機率提高許多,意謂PM的定向性提高。傅立葉轉換紅外光譜分析發現活化avidin與GO混合後,氫鍵及C-N拉伸訊號的強度均增加,推測氫鍵及C-N鍵結是活化avidin與GO結合的主因。BCA蛋白質定量分析透析過後的活化avidin及與GO之混合物,發現添加GO可使活化avidin的保留率提升20 %。最後螢光分析結果顯示,活化avidin的最大放射波長不因GO的添加而紅位移,立體結構不受影響。總結本研究發現,GO可與活化avidin結合,作為以生物親合固定化法製作GO-PM複合晶片的架橋,此外,適量的添加GO並不會影響晶片活性,且有助於PM貼附的定向性。


Graphene oxide (GO) has unique properties and has recently become a research focus. Purple membrane (PM) is the cellular membrane of archaeon Halobacterium salinarum, which contains bacteriorhodopsin with a unidirectional light-driven proton pump ability. This research applied GO to PM-chip technology and employed water contact angle, CW differential photocurrent, pulse-laser fast photocurrent, Fourier transform infrared spectroscopy (FTIR), protein quantification, and fluorescence analyses to examine the GO effects. Self-assembled-monolayer (SAM) fabricated ITO was first coated with either activated avidin or its mixture with GO and used as linkers to immobilize biotinylated PM (b-PM) through affinity adsorption. The contact angle of clean ITO was 5~8, rose to ~30 after SAM fabrication, and further increased to ~65 following the coating with either activated avidin or its mixture with GO. The contact angle gradually decreased to ~15 with the increased addition of GO and was maintained at ~30 if b-PM had been successfully captured. A minor addition of GO caused insignificant effects on the differential photocurrent response of the as-prepared PM chips, while the response was almost completely inhibited with the result of only 5% residual activity when the GO addition concentration was increased and reached a critical value. Upon pulse-laser illumination, the chips prepared with the addition of GO generated a higher B1 fast photocurrent response with a better success rate than the chips prepared without GO, implying an improvement of the orientation uniformity of immobilized b-PM. FTIR analysis of the mixture of activated avidin and GO revealed augmentation of hydrogen binding as well as C-N stretching, suggesting hydrogen and covalent linkages between them. BCA protein analysis showed that 20% more activated avidin could be retained in dialysis tubes if GO had been added. Furthermore, there is no red shift of the fluorescence spectra of activated avidin when GO was present. Therefore, this study suggested the functional linkages between activated avidin and GO and demonstrated the feasibility of applying their mixture as a linker for b-PM affinity immobilization with little effects on PM activity but improvement of PM orientation uniformity.

中文摘要 I 英文摘要 II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 文獻回顧 3 2-1 石墨烯與氧化石墨烯 3 2-1-1 石墨烯 3 2-1-2 石墨烯的性質與結構 5 2-1-3 石墨烯與氧化石墨烯的合成 7 2-1-3-1 Graphene的合成 7 2-1-3-2 GO的合成 8 2-1-4 GO的性質與結構 9 2-1-5 氧化石墨烯的介面活性特性 12 2-1-5-1 GO的分散性 12 2-1-5-2 GO的雙親性(amphiphilicity)14 2-1-5-3 GO的介面活性 15 2-1-5-4 GO片的可調節雙親性 16 2-1-6 石墨烯氧化物和脂質膜相互作用和奈米複合結構 17 2-1-7 氧化石墨烯的螢光性質 20 2-1-8 GO的生物功能化及生物技術領域 23 2-2 細菌視紫質(Bacteriorhodopsin, BR)25 2-2-1 Halobacterium salinarum 25 2-2-2 BR(bacteriorhodopsin)的結構 26 2-2-3 BR的光循環 27 2-2-4 BR的光電流響應 28 第三章 實驗 32 3-1 實驗目的 32 3-2 實驗藥品 33 3-3 實驗設備 34 3-4 實驗流程 36 第四章 結果與討論 37 4-1 GO的界面活性對GO-PM複合晶片的影響 37 4-1-1 水滴接觸角分析 38 4-1-1-1 以不同濃度的活化avidin為橋架製備PM晶片 38 4-1-1-2 以不同濃度的活化avidn與GO混合物為橋架製備GO-PM複合晶片 40 4-1-2 微分光電流響應 43 4-1-2-1 界面活性劑(Triton X-100)對PM晶片光電流響應的影響 43 4-1-2-2 以不同濃度的活化avidin為橋架製備PM晶片 45 4-1-2-3 以不同濃度的活化avidn與GO混合物為橋架製備GO-PM複合晶片 46 4-1-3 脈衝雷射激發光電流響應分析 47 4-2 GO與活化avidin混合複合物之探討 49 4-2-1 蛋白質定量析 50 4-2-1-1 紫外光吸光法 50 4-2-1-2 Bradford分析法 51 4-2-1-3 BCA分析法 52 4-2-2 傅立葉轉換紅外光譜 55 4-2-3 螢光分析60 第五章 結論 64 第六章 參考文獻 66 附錄 72 A. 微分光電流 72 B. 脈衝光電流 84 C. 蛋白質定量分析 91 C-1 Bradford分析法 91 C-2 BCA分析法 93

陳逸航,"定向性細菌視紫質晶片之光電與二倍頻響應探討",國立臺灣科技大學化學工程研究所碩士論文 (2010)

蔡孟訓,"自排性單分子膜於bacteriorhodopsin光電晶片之製備探討",國立臺灣科技大學化學工程研究所碩士論文 (2011)

許遠玲,"氧化石墨烯於紫膜晶片技術之應用",國立臺灣科技大學化學工程研究所碩士論文 (2012)

Berger, C., Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad and P. N. First. "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics." The Journal of Physical Chemistry B, 108(52): 19912-19916. (2004)

Brodie, B. "Sur le poids atomique du graphite." Annales de Chimie et de Physique, 59(7). (1860)

Chien, C. T., S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. Chen, L. C. Chen, K. H. Chen, T. Nemoto and S. Isoda. "Tunable photoluminescence from graphene oxide." Angewandte Chemie International Edition, 51(27): 6662-6666. (2012)

Cote, L. J., J. Kim, V. C. Tung, J. Luo, F. Kim and J. Huang. "Graphene oxide as surfactant sheets." Pure and Applied Chemistry, 83(1): 95-110. (2010)

Dreyer, D. R., S. Park, C. W. Bielawski and R. S. Ruoff. "The chemistry of graphene oxide." Chemical Society Reviews, 39(1): 228-240. (2010)

Eda, G., Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. Chen, C. W. Chen and M. Chhowalla. "Blue photoluminescence from chemically derived graphene oxide." Advanced Materials, 22(4): 505-509. (2010)

Fasolino, A., J. Los and M. I. Katsnelson. "Intrinsic ripples in graphene." Nature Materials, 6(11): 858-861. (2007)

Frost, R., G. E. Jönsson, D. Chakarov, S. Svedhem and B. Kasemo. "Graphene oxide and lipid membranes: interactions and nanocomposite structures." Nano Letters, 12(7): 3356-3362. (2012)

Galande, C., A. D. Mohite, A. V. Naumov, W. Gao, L. Ci, A. Ajayan, H. Gao, A. Srivastava, R. B. Weisman and P. M. Ajayan. "Quasi-molecular fluorescence from graphene oxide." Scientific Reports, 1. (2011)

Geim, A. K. and K. S. Novoselov. "The rise of graphene." Nature Materials, 6(3): 183-191. (2007)
Gokus, T., R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari and A. Hartschuh. "Making graphene luminescent by oxygen plasma treatment." Journal of the American Chemical Society Nano, 3(12): 3963-3968. (2009)

Grdadolnik, J. "FTIR investigation of protein conformation." Bulletin of the Chemists and Technologists of Macedonia, 21(1): 23-34. (2002)

Hampp, N. "Bacteriorhodopsin as a photochromic retinal protein for optical memories." Chemical Reviews, 100(5): 1755-1776. (2000)

He, H., J. Klinowski, M. Forster and A. Lerf. "A new structural model for graphite oxide." Chemical Physics Letters, 287(1–2): 53-56. (1998)

Hong, F. and M. Montal. "Bacteriorhodopsin in model membranes. A new component of the displacement photocurrent in the microsecond time scale." Biophysical Journal, 25(3): 465-472. (1979)

Hummers Jr, W. S. and R. E. Offeman. "Preparation of graphitic oxide." Journal of the American Chemical Society Nano, 80(6): 1339-1339. (1958)

Kang, D.-W. and H.-S. Shin. "Control of size and physical properties of graphene oxide by changing the oxidation temperature." Carbon Letters, 13(1): 39-43. (2012)

Kawamura, I., M. Ohmine, J. Tanabe, S. Tuzi, H. Saito and A. Naito. "Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state NMR." Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768(12): 3090-3097. (2007)

Krishnan, A., E. Dujardin, M. Treacy, J. Hugdahl, S. Lynum and T. Ebbesen. "Graphitic cones and the nucleation of curved carbon surfaces." Nature, 388(6641): 451-454. (1997)

Kong, J. and S. Yu. "Fourier transform infrared spectroscopic analysis of protein secondary structures." Acta biochimica et biophysica sinica, 39(8): 549-559. (2007)

Laaksonen, P., M. Kainlauri, T. Laaksonen, A. Shchepetov, H. Jiang, J. Ahopelto and M. B. Linder. "Interfacial engineering by proteins: exfoliation and functionalization of graphene by hydrophobins." Angewandte Chemie International Edition, 49(29): 4946-4949. (2010)

Land, T., T. Michely, R. Behm, J. Hemminger and G. Comsa. "STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition." Surface Science, 264(3): 261-270. (1992)

Landau, L. D. "Zur Theorie der Phasenumwandlungen." II. Physikalische Zeitschrift der Sowjetunion, 11: 26-35. (1937)

Li, M., X. Huang, C. Wu, H. Xu, P. Jiang and T. Tanaka. "Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant." Journal of Materials Chemistry, 22(44): 23477-23484. (2012)

Liu, J., S. Fu, B. Yuan, Y. Li and Z. Deng. "Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide." Journal of the American Chemical Society Nano, 132(21): 7279-7281. (2010a)

Liu, Z., L. Jiang, F. Galli, I. Nederlof, R. C. Olsthoorn, G. E. Lamers, T. Oosterkamp and J. P. Abrahams. "A graphene oxide streptavidin complex for biorecognition–towards affinity purification." Advanced Functional Materials, 20(17): 2857-2865. (2010b)

Luo, Z., P. M. Vora, E. J. Mele, A. Johnson and J. M. Kikkawa. "Photoluminescence and band gap modulation in graphene oxide." Applied Physics Letters, 94(11): 111909-111909-111903. (2009)

MacMahon, R. "Avidin-biotin interactions: methods and applications." Methods in Molecular Biology 418 (3), 1940-6029,. (2008)

Mermin, N. D. "Crystalline order in two dimensions." Physical Review, 176(1): 250. (1968)

Meyer, J. C., A. Geim, M. Katsnelson, K. Novoselov, T. Booth and S. Roth. "The structure of suspended graphene sheets." Nature, 446(7131): 60-63. (2007)

Nagashima, A., K. Nuka, H. Itoh, T. Ichinokawa, C. Oshima and S. Otani. "Electronic states of monolayer graphite formed on TiC (111) surface." Surface Science, 291(1): 93-98. (1993)

Neto, A. C., F. Guinea, N. Peres, K. S. Novoselov and A. K. Geim. "The electronic properties of graphene." Reviews of Modern Physics, 81(1): 109. (2009)

Novoselov, K. S., A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov. "Electric field effect in atomically thin carbon films." Science, 306(5696): 666-669. (2004)

Ohno, Y., K. Maehashi, Y. Yamashiro and K. Matsumoto. "Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption." Nano Letters, 9(9): 3318-3322. (2009)

Pan, S. and I. A. Aksay. "Factors controlling the size of graphene oxide sheets produced via the graphite oxide route." Journal of the American Chemical Society Nano, 5(5): 4073-4083. (2011)

Paredes, J., S. Villar-Rodil, A. Martinez-Alonso and J. Tascon. "Graphene oxide dispersions in organic solvents." Langmuir, 24(19): 10560-10564. (2008)

Peierls, R. Quelques proprietes typiques des corps solides. Annales de l'institut Henri Poincare, Presses universitaires de France.(1935)

Pinto, A. M., I. C. Goncalves and F. D. Magalhaes. "Graphene-based materials biocompatibility: a review." Colloids and Surfaces B: Biointerfaces. (2013)

Sapra, K. T., H. Besir, D. Oesterhelt and D. J. Muller. "Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy." Journal of Molecular Biology, 355(4): 640-650. (2006)

Shang, J., L. Ma, J. Li, W. Ai, T. Yu and G. G. Gurzadyan. "The Origin of Fluorescence from Graphene Oxide." Scientific Reports, 2. (2012)

Shao, Y., J. Wang, H. Wu, J. Liu, I. A. Aksay and Y. Lin. "Graphene based electrochemical sensors and biosensors: a review." Electroanalysis, 22(10): 1027-1036. (2010)

Stankovich, S., R. D. Piner, X. Chen, N. Wu, S. T. Nguyen and R. S. Ruoff. "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)." Journal of Materials Chemistry, 16(2): 155-158. (2006)

Staudenmaier, L. "Verfahren zur darstellung der graphitsaure." Berichte der Deutschen Chemischen Gesellschaft, 31(2): 1481-1487. (1898)

Stolyarova, E., K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen and G. W. Flynn. "High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface." Proceedings of the National Academy of Sciences, 104(22): 9209-9212. (2007)

Su, C.-Y., Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang and L.-J. Li. "Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors." Journal of the American Chemical Society Nano, 4(9): 5285-5292. (2010)

Van Bommel, A., J. Crombeen and A. Van Tooren. "LEED and Auger electron observations of the SiC (0001) surface." Surface Science, 48(2): 463-472. (1975)

Viculis, L. M., J. J. Mack and R. B. Kaner. "A chemical route to carbon nanoscrolls." Science, 299(5611): 1361-1361. (2003)

Wang, J.-P., S.-K. Yoo, L. Song and M. A. El-Sayed. "Molecular mechanism of the differential photoelectric response of bacteriorhodopsin." The Journal of Physical Chemistry B, 101(17): 3420-3423. (1997)

Wang, J. "Vectorially oriented purple membrane: characterization by photocurrent measurement and polarized-Fourier transform infrared spectroscopy." Thin Solid Flms, 379(1): 224-229. (2000)

Wang, Y., Z. Li, J. Wang, J. Li and Y. Lin. "Graphene and graphene oxide: biofunctionalization and applications in biotechnology." Trends in Biotechnology, 29(5): 205-212. (2011)

Wang, X. and W. Dou. "Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites." Thermochimica Acta, 529: 25-28. (2012)

Zhang, Y., J. P. Small, M. E. Amori and P. Kim. "Electric field modulation of galvanomagnetic properties of mesoscopic graphite." Physical Review Letters. (2004)

Zhang, J., F. Zhang, H. Yang, X. Huang, H. Liu, J. Zhang and S. Guo. "Graphene oxide as a matrix for enzyme immobilization." Langmuir, 26(9): 6083-6085. (2010)

Zhou, X. and Z. Liu. "A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets." Chemical Communications, 46(15): 2611-2613. (2010)

Zhu, Y., S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff. "Graphene and graphene oxide: synthesis, properties, and applications." Advanced Materials, 22(35): 3906-3924. (2010)

無法下載圖示 全文公開日期 2018/10/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE