簡易檢索 / 詳目顯示

研究生: 陳信閔
Sin-Min Chen
論文名稱: 纖維加勁石膠泥瀝青混凝土設計與工程績效特徵
Design and Performance Characteristics of Fiber-Reinforced Stone Matrix Asphalt
指導教授: 廖敏志
Min-Chih Liao
口試委員: 黃建維
Chien-Wei Huang
林彥宇
Yen-Yu Lin
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 179
中文關鍵詞: 石膠泥瀝青混凝土玄武岩纖維纖維素纖維動態剪切流變儀間接張力強度試驗間接張力開裂試驗間接張力車轍試驗
外文關鍵詞: SMA, Basalt Fiber, Cellulose Fiber, DSR, IDT, IDEAL-CT, IDEAL-RT
相關次數: 點閱:410下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  柔性鋪面易受溫度、氣候、交通荷載等因素降低使用年限,近年來更是隨著極端氣候日益頻繁與交通荷載增加而產生各式早期損壞,主要破壞模式分別為疲勞破壞及車轍破壞。而石膠泥瀝青混凝土(Stone Matrix Asphalt, SMA)之設計理念為使其具較佳之抗車轍能力,適合用於重載與交通量繁重道路,但過去研究對於SMA之抗開裂性能則較少著墨。本研究探討利用纖維加勁SMA提升其抗張能力,追求抗疲勞和抗車轍兩種績效間平衡,故利用韌性試驗、動態剪切流變儀相關試驗評估纖維瀝青膠泥之流變性能,以確認玄武岩纖維(Basalt Fiber)及纖維素纖維(Cellulose Fiber)之最佳添加量,再沿用纖維添加量製備纖維加勁SMA,主要藉由間接張力開裂試驗(IDEAL-CT)及間接張力車轍試驗(IDEAL-RT)兩項試驗進行績效分析,同時利用間接張力強度試驗(IDT)及高溫間接張力強度試驗(HT-IDT)加以評估其疲勞與車轍性能,分析纖維對纖維加勁SMA之加勁效果,並探討不同添加方式對於纖維加勁SMA之影響。綜觀纖維加勁瀝青膠泥試驗,3 mm玄武岩纖維對於瀝青膠泥之加勁機制較纖維素纖維明顯、穩定,不過3 mm玄武岩纖維添加量若超過0.3%,將導致其工作性不佳,而纖維對於瀝青膠泥之加勁影響程度依序為纖維對於瀝青膠泥之體積填充加勁效應,次之為兩介面間作用力之物理化學加勁效應,再者為纖維間之顆粒交互作用加勁效應;而乾式拌合之纖維加勁SMA所需之瀝青含量較多,空隙率對於纖維SMA之疲勞性能與車轍性能有所影響,但纖維長度對於纖維加勁SMA之鋪面績效性能無一絕對關係,綜觀纖維加勁SMA之鋪面績效試驗,其抗開裂性能相當優異,但以IDEAL-RT測試抗車轍性能則有待未來研究深入探討。


  The susceptibility of flexible pavements to environmental factors and traffic loads can reduce their serviceability. Due to extreme weather events and increased traffic loads, the occurrence of various types of premature deterioration has increased. The most common distress types of asphalt pavements are fatigue cracking and rutting, which occur at intermediate and high temperatures, respectively. Stone matrix asphalt (SMA)is designed for use on roads with high traffic volumes and heavy loads due to its high resistance to rutting, which is a result of its high coarse aggregate content interlocked to form a stone skeleton. However, because of the higher asphalt content, drainage of asphalt binder through air voids was the issue.
  This study examines the use of basalt fiber and cellulose fiber reinforcement at varying concentrations to enhance the capacity of stone matrix asphalt and to achieve a balance between fatigue resistance and rutting resistance. The asphalt binders with fibers were evaluated using toughness and dynamic shear rheological tests. The selected fiber content was then used to prepare fiber-reinforced stone matrix asphalt. The fatigue and rutting performance for fiber-reinforced stone matrix asphalt were assessed by means of the indirect tensile strength test(IDT), the high-temperature indirect tensile strength testm(HT-IDT), the indirect tension cracking test(IDEAL-CT), and the indirect tension rutting test(IDEAL-RT).
  The results revealed that, in the fiber-modified asphalt mixture tests, the 3mm basalt fiber demonstrated more noticeable and stable reinforcement effects on the asphalt mixture than the cellulose fiber. However, if the 3mm basalt fiber content exceeded 0.3%, the workability of the mixture would decrease. The degree of fiber reinforcement effect on the asphalt mixture was determined in the following order: first, the volume filling effect of the fiber in the asphalt mixture, then the physical and chemical effects between the fiber and asphalt, and finally, the particle interaction effect among the fibers. In addition, fiber-reinforced stone matrix asphalt with dry process was found to require more asphalt content, and the void content influenced the fatigue and rutting performance of the fiber-modified stone matrix asphalt. Nonetheless, there was no absolute relationship between fiber length and the pavement performance of fiber-reinforced stone matrix asphalt. Overall, the performance tests results indicated that fiber-reinforced stone matrix asphalt appeared superior resistance to cracking. However, more research is needed to find out the rutting performance for the SMA in terms of IDEAL-RT results.

摘要 III ABSTRACT IV 誌謝 VI 目錄 VII 圖目錄 XII 表目錄 XVIII 英文縮寫目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 1.4 研究範圍 3 第二章 文獻回顧 4 2.1 石膠泥瀝青混凝土(SMA) 4 2.1.1 改質瀝青 5 2.1.2 纖維 8 2.2 瀝青膠泥之流變性能 11 2.2.1 韌性試驗(Toughness and Tenacity Test) 11 2.2.2 頻率掃描試驗(Frequency Sweep Test) 12 2.2.3 多重應力潛變恢復試驗(MSCR) 15 2.2.4 纖維對瀝青膠泥之加勁機制 17 2.3 混合料之力學性能 19 2.3.1 間接張力強度試驗(IDT) 20 2.3.2 間接張力開裂試驗(IDEAL-CT) 22 2.3.3 間接張力車轍試驗(IDEAL-RT) 25 第三章 研究計畫 34 3.1 試驗範圍 34 3.2 研究流程 35 3.3 試體編號 37 3.4 試驗材料 39 3.4.1 瀝青膠泥 39 3.4.2 玄武岩纖維 40 3.4.3 纖維素纖維 42 3.4.4 粗細粒料 44 3.4.5 填充料 46 3.5 瀝青膠泥試驗方法 47 3.5.1 瀝青比重試驗 47 3.5.2 針入度試驗 48 3.5.3 軟化點試驗 50 3.5.4 黏滯度試驗 52 3.5.5 韌性試驗(Toughness and Tenacity Test) 53 3.5.6 頻率掃描試驗(Frequency Sweep Test) 55 3.5.7 多重應力潛變恢復試驗(MSCR) 57 3.6 纖維試驗方法 58 3.6.1 玄武岩纖維試驗 58 3.6.2 纖維素纖維試驗 58 3.6.3 掃瞄式電子顯微鏡(SEM) 60 3.7 粒料試驗方法 62 3.7.1 細粒料比重和吸水率試驗 62 3.7.2 粗粒料比重和吸水率試驗 63 3.7.3 粗粒料扁平、細長或扁長顆粒含量試驗 64 3.7.4 粗粒料破碎顆粒含量試驗 66 3.8 填充料試驗方法 68 3.8.1 石粉比重試驗 68 3.8.2 液性限度試驗 68 3.8.3 塑性限度試驗 70 3.9 瀝青混合料試驗方法 71 3.9.1 馬歇爾配比設計 71 3.9.2 最大理論比重試驗 75 3.9.3 間接張力強度試驗 76 3.9.4 高溫間接張力強度試驗 78 3.9.5 間接張力開裂試驗 79 3.9.6 間接張力車轍試驗 81 第四章 結果與分析 84 4.1 瀝青膠泥之基本物性 84 4.1.1 比重試驗 84 4.1.2 針入度試驗 85 4.1.3 軟化點試驗 86 4.1.4 黏滯度試驗 87 4.2 瀝青膠泥之進階分析 90 4.2.1 韌性試驗 90 4.2.2 頻率掃描試驗 94 4.2.3 多重應力潛變恢復試驗 97 4.3 纖維之基本物性 100 4.3.1 玄武岩纖維(Basalt Fiber) 100 4.3.2 纖維素纖維(Cellulose Fiber) 101 4.4 粒料之基本物性 103 4.5 填充料之基本物性 105 4.6 瀝青混合料之基本設計 106 4.7 瀝青混合料之進階分析 115 4.7.1 前導試驗 115 4.7.2 間接張力強度試驗(IDT) 120 4.7.3 高溫間接張力強度試驗(HT-IDT) 121 4.7.4 間接張力開裂試驗(IDEAL-CT) 122 4.7.5 間接張力車轍試驗(IDEAL-RT) 127 4.8 鋪面績效試驗綜合分析 131 4.8.1 IDEAL-CT與IDT 131 4.8.2 IDEAL-RT與HT-IDT 132 4.8.3 IDEAL-RT與Marshall Quotient 134 4.8.4 IDEAL-CT與IDEAL-RT 136 4.8.5 IDT與HT-IDT 138 4.9 瀝青流變參數與鋪面績效性能之相關性 140 4.9.1 頻率掃描試驗與IDEAL-CT、IDT 140 4.9.2 頻率掃描試驗與IDEAL-RT、HT-IDT 141 4.9.3 MSCR與IDEAL-RT、HT-IDT 142 第五章 結論與建議 143 5.1 結論 143 5.2 建議 145 參考文獻 146

CNS487 A3006 (2013). “細粒料密度、相對密度(比重)及吸水率試驗法”, 行政院經濟部標準檢驗局.
CNS488 A3007 (2008). “粗粒料密度、相對密度(比重)及吸水率試驗法”, 行政院經濟部標準檢驗局.
CNS12395 A3293 (1988). “以馬歇爾儀試驗瀝青混合料塑性流動阻力試驗法”, 行政院經濟部標準檢驗局.
CNS 486 A3005 (2001). “粗細粒料篩析法”, 行政院經濟部標準檢驗局.
CNS 2486 K6204 (2022). “瀝青軟化點試驗法(環球儀)”, 行政院經濟部標準檢驗局.
CNS 5088 A3087 (2010). “土壤液性限度試驗、塑性限度試驗及塑性指數決定法”, 行政院經濟部標準檢驗局.
CNS 8758 A3150 (1987). “瀝青舖面混合料理論最大比重試驗法”, 行政院經濟部標準檢驗局.
CNS 10090 K6755 (2019). “瀝青/柏油針入度試驗法”, 行政院經濟部標準檢驗局.
CNS 11272 R3122 (1985). “水硬性水泥密度試驗法 ”, 行政院經濟部標準檢驗局.
CNS 14185 K61049 (1998). “瀝青材料韌性及極限張應力試驗法”, 行政院經濟部標準檢驗局.
CNS 14186 K61050 (1998). “無填充料瀝青黏度測定法(布魯克熱力黏度計法)”, 行政院經濟部標準檢驗局.
CNS 15171 A3408 (2008). “粗粒料中扁平、細長或扁長顆粒含量試驗法”, 行政院經濟部標準檢驗局.
CNS 15312 A3420 (2010). “粗粒料中破碎顆粒含量試驗法”, 行政院經濟部標準檢驗局.
CNS 15476 A3429 (2011). “半固態瀝青材料密度試驗法(比重瓶法)”, 行政院經濟部標準檢驗局.
林志棟. (2008). 石膠泥(SMA)瀝青混凝土, 臺灣鋪面之設計與應用實務, 頁67-72, 中華鋪面工程學會.
林桂儀. (2006). 不同添加料對瀝青膠漿特性之影響, 博士論文, 國立成功大學土木工程系. 臺南市.
施工綱要規範第02743章 (2013). “石膠泥瀝青混凝土鋪面”, 行政院公共工程委員會.
張毓芸. (2022). 決定再生瀝青黏結料混合程度與混合現象評估, 碩士論文, 國立臺灣科技大學營建工程系. 臺北市.
陳建旭、廖敏志、蔡哲軒與劉伃芝. (2012). 實驗室評估石膠泥瀝青混凝土 (SMA) 應用於機場道面. 鋪面工程, 10(1), 73-84.
蔡昱倫. (2022). 瀝青混凝土抗裂指標評估與績效驗證流程建立, 碩士論文, 國立臺灣科技大學營建工程系. 臺北市.
蔡攀鰲、陳偉全與陳建旭. (2001). 台灣柔性路面破壞與瀝青材料性質關係之研究 (III), 行政院交通部.
羅玉珊. (2020). 橡膠改質對瀝青黏結料與混合料之工程績效影響, 碩士論文, 國立臺灣科技大學營建工程系. 臺北市.
AASHTO M320-21 (2021). “Standard Specification for Performance-Graded Asphalt Binder”, American Association of State Highway and Transportation Officials.
AASHTO M 325-08 (2021). “Standard Specification for Stone Matrix Asphalt (SMA)”, American Association of State Highway and Transportation Officials.
AASHTO R30-22 (2022). “Standard Practice for Mixture Conditioning of Asphalt Mixtures”, American Association of State Highway and Transportation Officials.
AASHTO R46-22 (2022). “Standard Practice for Designing Stone Matrix Asphalt (SMA)”, American Association of State Highway and Transportation Officials.
AASHTO R92-18 (2022). “Standard Practice for Evaluating the Elastic Behavior of Asphalt Binders Using the Multiple Stress Creep Recovery (MSCR) Test”, American Association of State Highway and Transportation Officials.
AASHTO T49-22 (2022). “Standard Method of Test for Penetration of Bituminous Materials”, American Association of State Highway and Transportation Officials.
AASHTO T84-22 (2022). “Standard Method of Test for Specific Gravity and Absorption of Fine Aggregate”, American Association of State Highway and Transportation Officials.
AASHTO T85-22 (2022). “Standard Method of Test for Specific Gravity and Absorption of Coarse Aggregate”, American Association of State Highway and Transportation Officials.
AASHTO T133-22 (2022). “Standard Method of Test for Density of Hydraulic Cement American”, Association of State Highway and Transportation Officials.
AASHTO T201-22 (2022). “Standard Method of Test for Kinematic Viscosity of Asphalts (Bitumens)”, American Association of State Highway and Transportation Officials.
AASHTO T209-22 (2022). “Theoretical Maximum Specific Gravity (Gmm) and Density of Asphalt Mixtures”, American Association of State Highway and Transportation Officials.
AASHTO T245-22 (2022). “Standard Method of Test for Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus”, American Association of State Highway and Transportation Officials.
AASHTO T315-22 (2022). “Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)”, American Association of State Highway and Transportation Officials.
Afonso, M. L., Dinis-Almeida, M. and Fael, C. S. (2017). Study of the porous asphalt performance with cellulosic fibres. Construction and Building Materials, 135, 104-111.
AI MS-2 (2015). “Asphalt mix design methods”, Asphalt Institute.
Airey, G. D. (1997). Rheological characteristics of polymer modified and aged bitumens University of Nottingham Nottingham, UK.
Asi, I. M. (2006). Laboratory comparison study for the use of stone matrix asphalt in hot weather climates. Construction and Building Materials, 20(10), 982-989.
ASTM C127-15 (2016). “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate”, American Society for Testing and Materials.
ASTM C136/C136-19 (2020). “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates”, American Society for Testing and Materials.
ASTM C188-17 (2023). “Standard Test Method for Density of Hydraulic Cement”, American Society for Testing and Materials.
ASTM C612-14 (2019). “Standard Specification for Mineral Fiber Block and Board Thermal Insulation”, American Society for Testing and Materials.
ASTM D5/D5M-20 (2020). “Standard Test Method for Penetration of Bituminous Materials”, American Society for Testing and Materials.
ASTM D36/D36-14 (2020). “Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus)”, American Society for Testing and Materials.
ASTM D70/D70M-21 (2021). “Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method)”, American Society for Testing and Materials.
ASTM D2041/D2041M-19 (2019). “Standard Test Method for Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures”, American Society for Testing and Materials.
ASTM D4124-09 (2018). “Standard Test Method for Separation of Asphalt into Four Fractions”, American Society for Testing and Materials.
ASTM D4318-17e1 (2018). “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils”, American Society for Testing and Materials.
ASTM D4402/D4402M-23 (2023). “Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer”, American Society for Testing and Materials.
ASTM D4791-19 (2019). “Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate”, American Society for Testing and Materials.
ASTM D5801-17 (2017). “Standard Test Method for Toughness and Tenacity of Asphalt Materials”, American Society for Testing and Materials.
ASTM D5821-13 (2017). “Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate”, American Society for Testing and Materials.
ASTM D6925-15 (2016). “Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor”, American Society for Testing and Materials.
ASTM D6931-17 (2017). “Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures”, American Society for Testing and Materials.
ASTM D7175-15 (2017). “Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer”, American Society for Testing and Materials.
ASTM D7405-20 (2020). “Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer”, American Society for Testing and Materials.
ASTM D8225-19 (2019). “Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature”, American Society for Testing and Materials.
ASTM D8360-22 (2022). “Standard Test Method for Determination of Rutting Tolerance Index of Asphalt Mixture Using the Ideal Rutting Test”, American Society for Testing and Materials.
Bennert, T., Haas, E. and Wass, E. (2018). Indirect tensile test (IDT) to determine asphalt mixture performance indicators during quality control testing in New Jersey. Transportation Research Record, 2672(28), 394-403.
Boz, I., Coffey, G. P., Habbouche, J., Diefenderfer, S. D. and Ozbulut, O. E. (2022). A critical review of monotonic loading tests to evaluate rutting potential of asphalt mixtures. Construction and Building Materials, 335, 127484.
Brown, E., Haddock, J. E., Mallick, R. B. and Lynn, T. A. (1997). Development of a mixture design procedure for stone matrix asphalt. Technical Report, National Center for Asphalt Technology (NCAT), Auburn, AL, USA.
Brown, E. R. and Manglorkar, H. (1993). Evaluation of laboratory properties of SMA mixtures. National Center for Asphalt Technology, Auburn, AL, USA.
Buschow, K. H. J. (2001). Encyclopedia of Materials: Science and Technology. Elsevier.
Cash, K. L. (2021). Investigation of Rutting Resistance of Superpave 5 Asphalt Mixtures. MSc Thesis, University of the Minnesota, Minnesota, USA.
Chen, J.-S., Liao, M.-C. and Lin, C.-H. (2003). Determination of polymer content in modified bitumen. Materials and structures, 36, 594-598.
Chen, J.-S., Liao, M.-C. and Shiah, M.-S. (2002). Asphalt modified by styrene-butadiene-styrene triblock copolymer: Morphology and model. Journal of materials in civil engineering, 14(3), 224-229.
Chen, J.-S. and Peng, C.-H. (1998). Analyses of tensile failure properties of asphalt-mineral filler mastics. Journal of materials in civil engineering, 10(4), 256-262.
Coffey, G. P. (2023). Simple and practical tests for rutting evaluation of asphalt mixtures in the balanced mix design process, Virginia Transportation Research, CouncilCharlottesville, Virginia.
D'Angelo, J. A. (2009). The relationship of the MSCR test to rutting. Road Materials and Pavement Design, 10(sup1), 61-80.
Hintz, C. and Bahia, H. (2013). Simplification of linear amplitude sweep test and specification parameter. Transportation Research Record, 2370(1), 10-16.
Islam, M. R., Hossain, M. I. and Tarefder, R. A. (2015). A study of asphalt aging using Indirect Tensile Strength test. Construction and Building Materials, 95, 218-223.
JRS. (2013). Pellets for Fiber Modified Asphalt Mixtures. VIATOP®66, J. Rettenmaier & Söhne, Rosenberg, Germany.
Li, N., Zhan, H., Yu, X., Tang, W. and Xue, Q. (2021). Investigation of the aging behavior of cellulose fiber in reclaimed asphalt pavement. Construction and Building Materials, 271, 121559.
Li, Z., Li, K., Chen, W., Liu, W., Yin, Y. and Cong, P. (2022). Investigation on the characteristics and effect of plant fibers on the properties of asphalt binders. Construction and Building Materials, 338, 127652.
Lin, J. D., Chen, S. H., Liu, P. and Wang, J. N. (2004). Modified toughness used to evaluate the effect of polymer modified asphalt on SMA. Journal of the Chinese institute of engineers, 27(7), 1013-1020.
Liu, H., Zeiada, W., Al-Khateeb, G. G., Shanableh, A. and Samarai, M. (2021). Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: A literature review. Construction and Building Materials, 269, 121320.
Lou, K., Kang, A., Xiao, P., Wu, Z., Li, B. and Wang, X. (2021a). Effects of basalt fiber coated with different sizing agents on performance and microstructures of asphalt mixture. Construction and Building Materials, 266, 121155.
Lou, K., Xiao, P., Wu, B., Kang, A., Wu, X. and Shen, Q. (2021b). Effects of fiber length and content on the performance of ultra-thin wearing course modified by basalt fibers. Construction and Building Materials, 313, 125439.
Lu, X. (1997). On polymer modified road bitumens [doctoral dissertation]. Stockholm: KTH Royal Institute of Technology.
Luo, X., Hu, S., Zhou, F., Crockford, W. and Karki, P. (2022). Simple asphalt mixture shear rutting test and mechanical analysis. Journal of materials in civil engineering, 34(9), 04022220.
Mamuye, Y., Liao, M.-C. and Do, N.-D. (2022). Nano-Al2O3 composite on intermediate and high temperature properties of neat and modified asphalt binders and their effect on hot mix asphalt mixtures. Construction and Building Materials, 331, CNS487 A3006 (2013). “細粒料密度、相對密度(比重)及吸水率試驗法”, 行政院經濟部標準檢驗局.
CNS488 A3007 (2008). “粗粒料密度、相對密度(比重)及吸水率試驗法”, 行政院經濟部標準檢驗局.
CNS12395 A3293 (1988). “以馬歇爾儀試驗瀝青混合料塑性流動阻力試驗法”, 行政院經濟部標準檢驗局.
CNS 486 A3005 (2001). “粗細粒料篩析法”, 行政院經濟部標準檢驗局.
CNS 2486 K6204 (2022). “瀝青軟化點試驗法(環球儀)”, 行政院經濟部標準檢驗局.
CNS 5088 A3087 (2010). “土壤液性限度試驗、塑性限度試驗及塑性指數決定法”, 行政院經濟部標準檢驗局.
CNS 8758 A3150 (1987). “瀝青舖面混合料理論最大比重試驗法”, 行政院經濟部標準檢驗局.
CNS 10090 K6755 (2019). “瀝青/柏油針入度試驗法”, 行政院經濟部標準檢驗局.
CNS 11272 R3122 (1985). “水硬性水泥密度試驗法 ”, 行政院經濟部標準檢驗局.
CNS 14185 K61049 (1998). “瀝青材料韌性及極限張應力試驗法”, 行政院經濟部標準檢驗局.
CNS 14186 K61050 (1998). “無填充料瀝青黏度測定法(布魯克熱力黏度計法)”, 行政院經濟部標準檢驗局.
CNS 15171 A3408 (2008). “粗粒料中扁平、細長或扁長顆粒含量試驗法”, 行政院經濟部標準檢驗局.
CNS 15312 A3420 (2010). “粗粒料中破碎顆粒含量試驗法”, 行政院經濟部標準檢驗局.
CNS 15476 A3429 (2011). “半固態瀝青材料密度試驗法(比重瓶法)”, 行政院經濟部標準檢驗局.
林志棟. (2008). 石膠泥(SMA)瀝青混凝土, 臺灣鋪面之設計與應用實務, 頁67-72, 中華鋪面工程學會.
林桂儀. (2006). 不同添加料對瀝青膠漿特性之影響, 博士論文, 國立成功大學土木工程系. 臺南市.
施工綱要規範第02743章 (2013). “石膠泥瀝青混凝土鋪面”, 行政院公共工程委員會.
張毓芸. (2022). 決定再生瀝青黏結料混合程度與混合現象評估, 碩士論文, 國立臺灣科技大學營建工程系. 臺北市.
陳建旭、廖敏志、蔡哲軒與劉伃芝. (2012). 實驗室評估石膠泥瀝青混凝土 (SMA) 應用於機場道面. 鋪面工程, 10(1), 73-84.
蔡昱倫. (2022). 瀝青混凝土抗裂指標評估與績效驗證流程建立, 碩士論文, 國立臺灣科技大學營建工程系. 臺北市.
蔡攀鰲、陳偉全與陳建旭. (2001). 台灣柔性路面破壞與瀝青材料性質關係之研究 (III), 行政院交通部.
羅玉珊. (2020). 橡膠改質對瀝青黏結料與混合料之工程績效影響, 碩士論文, 國立臺灣科技大學營建工程系. 臺北市.
AASHTO M320-21 (2021). “Standard Specification for Performance-Graded Asphalt Binder”, American Association of State Highway and Transportation Officials.
AASHTO M 325-08 (2021). “Standard Specification for Stone Matrix Asphalt (SMA)”, American Association of State Highway and Transportation Officials.
AASHTO R30-22 (2022). “Standard Practice for Mixture Conditioning of Asphalt Mixtures”, American Association of State Highway and Transportation Officials.
AASHTO R46-22 (2022). “Standard Practice for Designing Stone Matrix Asphalt (SMA)”, American Association of State Highway and Transportation Officials.
AASHTO R92-18 (2022). “Standard Practice for Evaluating the Elastic Behavior of Asphalt Binders Using the Multiple Stress Creep Recovery (MSCR) Test”, American Association of State Highway and Transportation Officials.
AASHTO T49-22 (2022). “Standard Method of Test for Penetration of Bituminous Materials”, American Association of State Highway and Transportation Officials.
AASHTO T84-22 (2022). “Standard Method of Test for Specific Gravity and Absorption of Fine Aggregate”, American Association of State Highway and Transportation Officials.
AASHTO T85-22 (2022). “Standard Method of Test for Specific Gravity and Absorption of Coarse Aggregate”, American Association of State Highway and Transportation Officials.
AASHTO T133-22 (2022). “Standard Method of Test for Density of Hydraulic Cement American”, Association of State Highway and Transportation Officials.
AASHTO T201-22 (2022). “Standard Method of Test for Kinematic Viscosity of Asphalts (Bitumens)”, American Association of State Highway and Transportation Officials.
AASHTO T209-22 (2022). “Theoretical Maximum Specific Gravity (Gmm) and Density of Asphalt Mixtures”, American Association of State Highway and Transportation Officials.
AASHTO T245-22 (2022). “Standard Method of Test for Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus”, American Association of State Highway and Transportation Officials.
AASHTO T315-22 (2022). “Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)”, American Association of State Highway and Transportation Officials.
Afonso, M. L., Dinis-Almeida, M. and Fael, C. S. (2017). Study of the porous asphalt performance with cellulosic fibres. Construction and Building Materials, 135, 104-111.
AI MS-2 (2015). “Asphalt mix design methods”, Asphalt Institute.
Airey, G. D. (1997). Rheological characteristics of polymer modified and aged bitumens University of Nottingham Nottingham, UK.
Asi, I. M. (2006). Laboratory comparison study for the use of stone matrix asphalt in hot weather climates. Construction and Building Materials, 20(10), 982-989.
ASTM C127-15 (2016). “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate”, American Society for Testing and Materials.
ASTM C136/C136-19 (2020). “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates”, American Society for Testing and Materials.
ASTM C188-17 (2023). “Standard Test Method for Density of Hydraulic Cement”, American Society for Testing and Materials.
ASTM C612-14 (2019). “Standard Specification for Mineral Fiber Block and Board Thermal Insulation”, American Society for Testing and Materials.
ASTM D5/D5M-20 (2020). “Standard Test Method for Penetration of Bituminous Materials”, American Society for Testing and Materials.
ASTM D36/D36-14 (2020). “Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus)”, American Society for Testing and Materials.
ASTM D70/D70M-21 (2021). “Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method)”, American Society for Testing and Materials.
ASTM D2041/D2041M-19 (2019). “Standard Test Method for Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures”, American Society for Testing and Materials.
ASTM D4124-09 (2018). “Standard Test Method for Separation of Asphalt into Four Fractions”, American Society for Testing and Materials.
ASTM D4318-17e1 (2018). “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils”, American Society for Testing and Materials.
ASTM D4402/D4402M-23 (2023). “Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer”, American Society for Testing and Materials.
ASTM D4791-19 (2019). “Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate”, American Society for Testing and Materials.
ASTM D5801-17 (2017). “Standard Test Method for Toughness and Tenacity of Asphalt Materials”, American Society for Testing and Materials.
ASTM D5821-13 (2017). “Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate”, American Society for Testing and Materials.
ASTM D6925-15 (2016). “Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor”, American Society for Testing and Materials.
ASTM D6931-17 (2017). “Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures”, American Society for Testing and Materials.
ASTM D7175-15 (2017). “Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer”, American Society for Testing and Materials.
ASTM D7405-20 (2020). “Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer”, American Society for Testing and Materials.
ASTM D8225-19 (2019). “Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature”, American Society for Testing and Materials.
ASTM D8360-22 (2022). “Standard Test Method for Determination of Rutting Tolerance Index of Asphalt Mixture Using the Ideal Rutting Test”, American Society for Testing and Materials.
Bennert, T., Haas, E. and Wass, E. (2018). Indirect tensile test (IDT) to determine asphalt mixture performance indicators during quality control testing in New Jersey. Transportation Research Record, 2672(28), 394-403.
Boz, I., Coffey, G. P., Habbouche, J., Diefenderfer, S. D. and Ozbulut, O. E. (2022). A critical review of monotonic loading tests to evaluate rutting potential of asphalt mixtures. Construction and Building Materials, 335, 127484.
Brown, E., Haddock, J. E., Mallick, R. B. and Lynn, T. A. (1997). Development of a mixture design procedure for stone matrix asphalt. Technical Report, National Center for Asphalt Technology (NCAT), Auburn, AL, USA.
Brown, E. R. and Manglorkar, H. (1993). Evaluation of laboratory properties of SMA mixtures. National Center for Asphalt Technology, Auburn, AL, USA.
Buschow, K. H. J. (2001). Encyclopedia of Materials: Science and Technology. Elsevier.
Cash, K. L. (2021). Investigation of Rutting Resistance of Superpave 5 Asphalt Mixtures. MSc Thesis, University of the Minnesota, Minnesota, USA.
Chen, J.-S., Liao, M.-C. and Lin, C.-H. (2003). Determination of polymer content in modified bitumen. Materials and structures, 36, 594-598.
Chen, J.-S., Liao, M.-C. and Shiah, M.-S. (2002). Asphalt modified by styrene-butadiene-styrene triblock copolymer: Morphology and model. Journal of materials in civil engineering, 14(3), 224-229.
Chen, J.-S. and Peng, C.-H. (1998). Analyses of tensile failure properties of asphalt-mineral filler mastics. Journal of materials in civil engineering, 10(4), 256-262.
Coffey, G. P. (2023). Simple and practical tests for rutting evaluation of asphalt mixtures in the balanced mix design process, Virginia Transportation Research, CouncilCharlottesville, Virginia.
D'Angelo, J. A. (2009). The relationship of the MSCR test to rutting. Road Materials and Pavement Design, 10(sup1), 61-80.
Hintz, C. and Bahia, H. (2013). Simplification of linear amplitude sweep test and specification parameter. Transportation Research Record, 2370(1), 10-16.
Islam, M. R., Hossain, M. I. and Tarefder, R. A. (2015). A study of asphalt aging using Indirect Tensile Strength test. Construction and Building Materials, 95, 218-223.
JRS. (2013). Pellets for Fiber Modified Asphalt Mixtures. VIATOP®66, J. Rettenmaier & Söhne, Rosenberg, Germany.
Li, N., Zhan, H., Yu, X., Tang, W. and Xue, Q. (2021). Investigation of the aging behavior of cellulose fiber in reclaimed asphalt pavement. Construction and Building Materials, 271, 121559.
Li, Z., Li, K., Chen, W., Liu, W., Yin, Y. and Cong, P. (2022). Investigation on the characteristics and effect of plant fibers on the properties of asphalt binders. Construction and Building Materials, 338, 127652.
Lin, J. D., Chen, S. H., Liu, P. and Wang, J. N. (2004). Modified toughness used to evaluate the effect of polymer modified asphalt on SMA. Journal of the Chinese institute of engineers, 27(7), 1013-1020.
Liu, H., Zeiada, W., Al-Khateeb, G. G., Shanableh, A. and Samarai, M. (2021). Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: A literature review. Construction and Building Materials, 269, 121320.
Lou, K., Kang, A., Xiao, P., Wu, Z., Li, B. and Wang, X. (2021a). Effects of basalt fiber coated with different sizing agents on performance and microstructures of asphalt mixture. Construction and Building Materials, 266, 121155.
Lou, K., Xiao, P., Wu, B., Kang, A., Wu, X. and Shen, Q. (2021b). Effects of fiber length and content on the performance of ultra-thin wearing course modified by basalt fibers. Construction and Building Materials, 313, 125439.
Lu, X. (1997). On polymer modified road bitumens [doctoral dissertation]. Stockholm: KTH Royal Institute of Technology.
Luo, X., Hu, S., Zhou, F., Crockford, W. and Karki, P. (2022). Simple asphalt mixture shear rutting test and mechanical analysis. Journal of materials in civil engineering, 34(9), 04022220.
Mamuye, Y., Liao, M.-C. and Do, N.-D. (2022). Nano-Al2O3 composite on intermediate and high temperature properties of neat and modified asphalt binders and their effect on hot mix asphalt mixtures. Construction and Building Materials, 331, 127304.
Mohammed, M., Parry, T. and Grenfell, J. J. (2018). Influence of fibres on rheological properties and toughness of bituminous binder. Construction and Building Materials, 163, 901-911.
NAPA. (2002). Designing and Constructing SMA Mixtures– State of the Practice. Quality Improvement Series 122, National Asphalt Pavement Association, Lanham, Maryland.
Newcomb, D. and Zhou, F. (2018). Balanced design of asphalt mixtures.
Nielsen, L. E. (1978). Predicting the Properties of Mixtures: Mixture Rules in Science and Engineering. M. Dekker.
Polacco, G., Stastna, J., Biondi, D. and Zanzotto, L. (2006). Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Current opinion in colloid & interface science, 11(4), 230-245.
Saedi, S. and Oruc, S. (2020). The influence of SBS, viatop premium and FRP on the improvement of stone mastic asphalt performance. Fibers, 8(4), 20.
Sengul, C. E., Oruc, S., Iskender, E. and Aksoy, A. (2013). Evaluation of SBS modified stone mastic asphalt pavement performance. Construction and Building Materials, 41, 777-783.
Slebi-Acevedo, C. J., Lastra-González, P., Pascual-Muñoz, P. and Castro-Fresno, D. (2019). Mechanical performance of fibers in hot mix asphalt: A review. Construction and Building Materials, 200, 756-769.
Witzcak, M. W. (2002). Simple performance test for superpave mix design. National Academy Press.
Yang, C., Liu, Z., Tong, X., Guo, L., Miao, S., Jiang, L., Li, Y., Li, H. and Liu, C. (2022). Effects of raw material homogenization on the structure of basalt melt and performance of fibers. Ceramics International, 48(9), 11998-12005.
Zhang, Y., Ma, T., Ling, M., Zhang, D. and Huang, X. (2019). Predicting Dynamic Shear Modulus of Asphalt Mastics Using Discretized-Element Simulation and Reinforcement Mechanisms. Journal of materials in civil engineering, 31(8), 04019163.
Zhang, J., Walubita, L. F., Faruk, A. N., Karki, P. and Simate, G. S. (2015). Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance–A laboratory study. Construction and Building Materials, 94, 218-227.
Zhang, Y., Ma, T., Ling, M., Zhang, D. and Huang, X. (2019). Predicting dynamic shear modulus of asphalt mastics using discretized-element simulation and reinforcement mechanisms. Journal of materials in civil engineering, 31(8), 04019163.
Zhang, Y., Zhao, S., Li, Y., Xie, L. and Sheng, K. (2008). Radiation effects on styrene–butadiene–styrene copolymer. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(15), 3431-3436.
Zhou, F., Hu, S. and Newcomb, D. (2020). Development of a performance-related framework for production quality control with ideal cracking and rutting tests. Construction and Building Materials, 261, 120549.
Zhou, F., Im, S., Sun, L. and Scullion, T. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Materials and Pavement Design, 18(sup4), 405-427.
Zhou, F., Steger, R. and Mogawer, W. (2021). Development of a coherent framework for balanced mix design and production quality control and quality acceptance. Construction and Building Materials, 287, 123020.
Zhu, J., Birgisson, B. and Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18-38.

QR CODE