簡易檢索 / 詳目顯示

研究生: 蕭永柔
Yung-Jou Hsiao
論文名稱: 理論計算於單壁奈米碳管在多巴胺感測器上的應用
Theoretical Study on Single-Walled Carbon Nanotubes for Dopamine Sensing
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 江偉宏
Wei-Hung Chiang
曾婷芝
Tina T.-C. Tseng
李祐慈
E. Y. Li
江志強
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 133
中文關鍵詞: 密度泛涵理論奈米碳管多巴胺感測器
外文關鍵詞: DFT, Carbon nanotubes, Dopamine, Sensor
相關次數: 點閱:276下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

多巴胺(Dopamine),是人體中主要的兒茶酚胺神經遞質之一,它影響我們的認知和情緒。此外,當多巴胺濃度太高時,會造成人的情緒亢奮;太低時則會引起帕金森氏症造成身體顫抖及運動障礙。因此,如何設計一個有效偵測多巴胺的感測器為一項很重要的議題。
本研究我將以奈米碳管為主體,設計適用多巴胺感測的材料。其中使用半導體性質的奈米碳管(半導體感測器)和金屬性質的奈米碳管(電化學感測器)作為多巴胺感測器,並且探討在實驗中如何選擇出金屬性質與半導體性質的奈米碳管。首先,在奈米碳管的分離方面,利用半經驗法(PM6),計算以不同的聚合物纏繞與混合的奈米碳管作用時,奈米碳管與聚合物之間的作用力,並且藉由作用力強弱來判斷聚合物對於奈米碳管的選擇性,以達到分離金屬性質與半導體性質的奈米碳管效果。在此研究中,我發現聚合物PTAA12-alt-PTAA對於 (6,5) 單壁奈米碳管 (SWNT) 有較高的選擇性。
瞭解奈米碳管的分離機制後,我進一步使用密度泛涵理論 (DFT) 計算,研究半導體感測器(Dopamine Semiconducting Sensor)以及電化學感測器(Dopamine Electrochemical Sensor)上偵測多巴胺的機制。我計算多巴胺吸附在不同硼、氮、硼氮摻雜濃度之半導體奈米碳管的吸附結構,並透過態密度(Density of States, DOS)分析,觀察能隙的改變,推算出導電度的變化,發現在0.55%硼-氮摻雜(6,5) SWNT以及2.20%硼-氮摻雜(6,5) SWNT下,多巴胺吸附會導致導電度有明顯的改變。另一方面,我進一步探討金屬性奈米碳管應用在多巴胺電化學感測器的可能性。在此研究中,將氧化態的多巴胺吸附在使用硼或氮摻雜的(5,5) SWNT上,藉由計算的吸附能結果顯示,0.83%硼摻雜 (5,5) SWNT對於第一氧化態和第二氧化態的多巴胺有很好的偵測效果。


Dopamine(DA) is one of the catecholamine neurotransmitters which can cause some nervous system disorders resulting in Parkinson's disease. Thus, the development of dopamine sensor is important for the diagnosis of these disorders. Previous study has reported that carbon nanotube (CNT) based materials could be an electrochemical biosensor for DA detection, including MWNTs and SWNTs. Moreover, separating the specific SWNT is also an important issue since synthesized CNT materials might consist of many kinds of CNTs such as semiconducting and metallic SWNT. In this work, by using semi-empirical calculation, we determined the interactions of polymers wrapped on the different types of SWNTs and found that PTAA12-alt-PTAA has high selectivity for (6,5) SWNT.
After realizing the separation mechanism of SWNTs, we carried out the simulation on DA semiconducting sensor and DA electrochemical sensor by using density functional theory (DFT) calculations. For the DA semiconducting sensor, we observed the large conductivity change on 0.55% B-N codoped (6,5) SWNT and 2.20% B-N codoped (6,5) SWNT after the adsorption of neutral DA. Thus, the calculations indicate that B-N codoped SWNTs illustrated high sensitivity toward to the DA detection. On the other hand, for the DA electrochemical sensor, the 0.83% boron doped (5,5) SWNT showed good performance of the first and second oxidation of DA sensing according to the high adsorption energy.

摘要 ABSTRACT 致謝 CONTENTS INDEX OF FIGURES INDEX OF TABLES INDEX OF SCHEMES Chapter 1 Introduction 1.1 Dopamine (DA) 1.2 Carbon nanotubes(CNTs) 1.2.1 Single walled carbon nanotubes (SWNTs) 1.2.2 Electronic Properties of Single-Walled Carbon Nanotubes (SWNTs) 1.3 Dopamine (DA) sensor 1.4 Present study Chapter 2 Selection of High-Purity Semiconducting Single-Walled Carbon Nanotubes Through Wrapping of Conjugated Polytriarylamines 2.1 Introduction 2.2 Computational Method 2.3 Results and discussion 2.3.1 Back bone effect 2.3.1 Side chain effect 2.4 Conclusion Chapter 3 Dopamine Sensing on Semiconducting Single-Walled Carbon Nanotubes 3.1 Introduction 3.2 Computational Details 3.3 Geometry 3.3.1 Dopamine (DA) 3.3.2 Different Doping Concentration of (6,5) SWNT 3.3.3 Band gap 3.4 DA Detection 3.4.1 DA Adsorption on Pure (6,5) SWNT 3.4.2 DA Adsorption on Boron-Nitrogen codoped (6,5) SWNT 3.3 Conclusion Chapter 4 Dopamine Sensing on Electrochemical Single-Walled Carbon Nanotubes 4.1 Introduction 4.2 Computational Method 4.3 Geometry 4.3.1 The Oxidization of Dopamine (DA) 4.3.2 Different Doping (5,5) SWNT 4.4 Detection 4.4.1 Oxidation of DA Adsorption on Pure (5,5) SWNT 4.4.2 Oxidation of DA Adsorption on Different Doping (5,5) SWNT 4.5 Conclusion Chapter 5 Summary REFERENCES Appendices

1. Wu, Y., et al., A dopamine sensor based on a methoxypolyethylene glycol polymer covalently modified glassy carbon electrode. Analyst, 2013. 138(4): p. 1204-11.
2. Ungerstedt, U. and G.W. Arbuthnott, Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Research, 1970. 24(3): p. 485-493.
3. Wightman, R.M., L.J. May, and A.C. Michael, Detection of dopamine dynamics in the brain. Analytical Chemistry, 1988. 60(13): p. 769A-793A.
4. Ciszewski, A. and G. Milczarek, Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid. Analytical chemistry, 1999. 71(5): p. 1055-1061.
5. Bernheimer, H., et al., Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. Journal of the Neurological Sciences, 1973. 20(4): p. 415-455.
6. Kroto, H.W., et al., C 60: buckminsterfullerene. nature, 1985. 318(6042): p. 162-163.
7. Ajayan, P. and O. Zhou, Applications of carbon nanotubes. Carbon nanotubes, 2001: p. 391-425.
8. Unwin, P.R., A.G. Guell, and G. Zhang, Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes. Acc Chem Res, 2016. 49(9): p. 2041-8.
9. Partoens, B. and F.M. Peeters, From graphene to graphite: Electronic structure around theKpoint. Physical Review B, 2006. 74(7).
10. Bandaru, P.R., Electrical Properties and Applications of Carbon Nanotube Structures. Journal of Nanoscience and Nanotechnology, 2007. 7(4): p. 1239-1267.
11. Jogi, B.F., et al., Dispersion and Performance Properties of Carbon Nanotubes (CNTs) Based Polymer Composites: A Review. Journal of Encapsulation and Adsorption Sciences, 2012. 02(04): p. 69-78.
12. Frackowiak, E. and F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 2002. 40(10): p. 1775-1787.
13. Wang, J., et al., Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Analytical Chemistry, 2002. 74(9): p. 1993-1997.
14. Dillon, A.C., et al., Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997. 386(6623): p. 377.
15. Ma, S.-B., et al., Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. Journal of Power Sources, 2008. 178(1): p. 483-489.
16. Baughman, R.H., A.A. Zakhidov, and W.A. de Heer, Carbon nanotubes--the route toward applications. Science, 2002. 297(5582): p. 787-92.
17. Saito, R., et al., Electronic structure of chiral graphene tubules. Applied Physics Letters, 1992. 60(18): p. 2204-2206.
18. Louie, S., Electronic properties, junctions, and defects of carbon nanotubes. Carbon Nanotubes, 2001: p. 113-145.
19. Zachariasen, W. and C. Kittel, Introduction to solid state physics. 1966.
20. Van der Hoorn, F., et al., Determination of catecholamines in human plasma by high-performance liquid chromatography: comparison between a new method with fluorescence detection and an established method with electrochemical detection. Journal of Chromatography B: Biomedical Sciences and Applications, 1989. 487: p. 17-28.
21. Peaston, R.T. and C. Weinkove, Measurement of catecholamines and their metabolites. Annals of clinical biochemistry, 2004. 41(1): p. 17-38.
22. Ku, S., S. Palanisamy, and S.M. Chen, Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode. J Colloid Interface Sci, 2013. 411: p. 182-6.
23. Lai, G.-S., H.-L. Zhang, and D.-Y. Han, Electrocatalytic oxidation and voltammetric determination of dopamine at a Nafion/carbon-coated iron nanoparticles-chitosan composite film modified electrode. Microchimica Acta, 2007. 160(1-2): p. 233-239.
24. Wang, C., et al., A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 2014. 204: p. 302-309.
25. Yu, D., et al., A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosens Bioelectron, 2012. 38(1): p. 270-7.
26. Sheng, Z.H., et al., Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron, 2012. 34(1): p. 125-31.
27. Kan, X., et al., Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochimica Acta, 2012. 63: p. 69-75.
28. Zhang, F., et al., One-pot solvothermal synthesis of a Cu 2 O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchimica Acta, 2011. 173(1): p. 103-109.
29. Qian, T., et al., Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosens Bioelectron, 2014. 58: p. 237-41.
30. Sabzi, E., K. Rezapour, and N. Samadi, Polyaniline-multi-wall-carbon nanotube nanocomposites as a dopamine sensor. Journal of the Serbian Chemical Society, 2010. 75(4): p. 537-549.
31. Ali, S.R., et al., A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Analytical Chemistry, 2007. 79(6): p. 2583-2587.
32. Kurniawan, F., et al., Single-Walled Carbon Nanotubes-Modified Gold Electrode for Dopamine Detection. ECS Journal of Solid State Science and Technology, 2017. 6(6): p. M3109-M3112.
33. Urdaneta, I., et al., Dopamine Adsorption on TiO2Anatase Surfaces. The Journal of Physical Chemistry C, 2014. 118(35): p. 20688-20693.
34. Zhou, X., W.Q. Tian, and X.-L. Wang, Adsorption sensitivity of Pd-doped SWCNTs to small gas molecules. Sensors and Actuators B: Chemical, 2010. 151(1): p. 56-64.
35. Peng, S., et al., Ab initio study of CNT NO2 gas sensor. Chemical Physics Letters, 2004. 387(4-6): p. 271-276.
36. Collins, P.G., et al., Extreme oxygen sensitivity of electronic properties of carbon nanotubes. science, 2000. 287(5459): p. 1801-1804.
37. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363(6430): p. 603-605.
38. Yasuda, S., et al., Improved and Large Area Single-Walled Carbon Nanotube Forest Growth by Controlling the Gas Flow Direction. ACS Nano, 2009. 3(12): p. 4164-4170.
39. Sangwan, V.K., et al., Fundamental Performance Limits of Carbon Nanotube Thin-Film Transistors Achieved Using Hybrid Molecular Dielectrics. ACS Nano, 2012. 6(8): p. 7480-7488.
40. Engel, M., et al., Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays. ACS Nano, 2008. 2(12): p. 2445-2452.
41. Odom, T.W., et al., Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998. 391(6662): p. 62-64.
42. Dai, H., Carbon Nanotubes:  Synthesis, Integration, and Properties. Accounts of Chemical Research, 2002. 35(12): p. 1035-1044.
43. Avouris, P., M. Freitag, and V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat Photon, 2008. 2(6): p. 341-350.
44. Samanta, S.K., et al., Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping. Accounts of Chemical Research, 2014. 47(8): p. 2446-2456.
45. Nikolaev, P., et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters, 1999. 313(1–2): p. 91-97.
46. Bachilo, S.M., et al., Narrow (n,m)-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst. Journal of the American Chemical Society, 2003. 125(37): p. 11186-11187.
47. He, M., et al., Predominant (6,5) Single-Walled Carbon Nanotube Growth on a Copper-Promoted Iron Catalyst. Journal of the American Chemical Society, 2010. 132(40): p. 13994-13996.
48. Lian, W.-R., et al., Flexible Electrochromic Devices Based on Optoelectronically Active Polynorbornene Layer and Ultratransparent Graphene Electrodes. Macromolecules, 2011. 44(24): p. 9550-9555.
49. Chen, W.-H., et al., N,N,N′,N′- Tetraphenyl-1,4-phenylenediamine−Fluorene Alternating Conjugated Polymer: Synthesis, Characterization, and Electrochromic Application. Macromolecules, 2010. 43(5): p. 2236-2243.
50. Chen, M.-C., et al., Improving the efficiency of an organic solar cell by a polymer additive to optimize the charge carriers mobility. Applied Physics Letters, 2011. 99(22): p. 223305.
51. Xu, X., et al., Hydrophilic poly(triphenylamines) with phosphonate groups on the side chains: synthesis and photovoltaic applications. Journal of Materials Chemistry, 2012. 22(10): p. 4329.
52. Shi, W., et al., Synthesis of novel triphenylamine-based conjugated polyelectrolytes and their application as hole-transport layers in polymeric light-emitting diodes. Journal of Materials Chemistry, 2006. 16(24): p. 2387.
53. Wang, P.-I., et al., Novel poly(triphenylamine-alt-fluorene) with asymmetric hexaphenylbenzene and pyrene moieties: synthesis, fluorescence, flexible near-infrared electrochromic devices and theoretical investigation. Polymer Chemistry, 2016. 7(7): p. 1505-1516.
54. Wang, P.-I., et al., High-Purity Semiconducting Single-Walled Carbon Nanotubes via Selective Dispersion in Solution Using Fully Conjugated Polytriarylamines. Macromolecules, 2016. 49(22): p. 8520-8529.
55. Gaussian09, R.A., 1, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson et al., Gaussian. Inc., Wallingford CT, 2009.
56. Stewart, J.J.P., Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 2007. 13(12): p. 1173-1213.
57. Hyman, S.E. and R.C. Malenka, Addiction and the brain: the neurobiology of compulsion and its persistence. Nature reviews neuroscience, 2001. 2(10): p. 695-703.
58. Palanisamy, S., S. Ku, and S.-M. Chen, Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchimica Acta, 2013. 180(11-12): p. 1037-1042.
59. Ju, S.Y., W.P. Kopcha, and F. Papadimitrakopoulos, Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science, 2009. 323(5919): p. 1319-23.
60. Peng, S. and K. Cho, Ab initio study of doped carbon nanotube sensors. Nano Letters, 2003. 3(4): p. 513-517.
61. Kong, J., et al., Nanotube molecular wires as chemical sensors. science, 2000. 287(5453): p. 622-625.
62. Kim, S.N., J.F. Rusling, and F. Papadimitrakopoulos, Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules. Adv Mater, 2007. 19(20): p. 3214-3228.
63. Heller, D.A., et al., Single-Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long-Term Labels and Optical Sensors. Advanced Materials, 2005. 17(23): p. 2793-2799.
64. Kumar, S.A., et al., Acid yellow 9 as a dispersing agent for carbon nanotubes: preparation of redox polymer-carbon nanotube composite film and its sensing application towards ascorbic acid and dopamine. Biosens Bioelectron, 2010. 25(12): p. 2592-7.
65. Wilder, J.W., et al., Electronic structure of atomically resolved carbon nanotubes. Nature, 1998. 391(6662): p. 59-62.
66. Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules. Physical review letters, 1992. 68(10): p. 1579.
67. Iiiima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
68. Dresselhaus, M., G. Dresselhaus, and R. Saito, Physics of carbon nanotubes. Carbon, 1995. 33(7): p. 883-891.
69. An, W. and C.H. Turner, Linking Carbon and Boron-Nitride Nanotubes: Heterojunction Energetics and Band Gap Tuning. The Journal of Physical Chemistry Letters, 2010. 1(15): p. 2269-2273.
70. Wang, R., et al., A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. Journal of Molecular Structure: THEOCHEM, 2007. 806(1-3): p. 93-97.
71. Nagarajan, V. and R. Chandiramouli, NiO nanocone as a CO sensor: DFT investigation. Structural Chemistry, 2014. 25(6): p. 1765-1771.
72. Baei, M.T., A.A. Peyghan, and Z. Bagheri, A computational study of AlN nanotube as an oxygen detector. Chinese Chemical Letters, 2012. 23(8): p. 965-968.
73. Beheshtian, J., A. Ahmadi Peyghan, and Z. Bagheri, Ab initio study of NH3 and H2O adsorption on pristine and Na-doped MgO nanotubes. Structural Chemistry, 2012. 24(1): p. 165-170.
74. Ahmadi, A., et al., Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sensors and Actuators B: Chemical, 2012. 161(1): p. 1025-1029.
75. Wang, R., R. Zhu, and D. Zhang, Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chemical Physics Letters, 2008. 467(1-3): p. 131-135.
76. Choudhuri, I., et al., B–N@Graphene: Highly Sensitive and Selective Gas Sensor. The Journal of Physical Chemistry C, 2015. 119(44): p. 24827-24836.
77. Wang, X., et al., Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev, 2014. 43(20): p. 7067-98.
78. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 1996. 6(1): p. 15-50.
79. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169.
80. Blöchl, P.E., Projector augmented-wave method. Physical review B, 1994. 50(24): p. 17953.
81. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758.
82. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
83. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
84. Klimeš, J., D.R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter, 2009. 22(2): p. 022201.
85. Becke, A.D. and K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. The Journal of chemical physics, 1990. 92(9): p. 5397-5403.
86. Sanville, E., et al., Improved grid‐based algorithm for Bader charge allocation. Journal of computational chemistry, 2007. 28(5): p. 899-908.
87. Pyykkö, P. and M. Atsumi, Molecular Single‐Bond Covalent Radii for Elements 1–118. Chemistry-A European Journal, 2009. 15(1): p. 186-197.
88. Li, S.S., Semiconductor physical electronics. 2012: Springer Science & Business Media.
89. Noroozifar, M., et al., Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. Biosens Bioelectron, 2011. 28(1): p. 56-63.
90. Kim, H.R., et al., Direct detection of tetrahydrobiopterin (BH4) and dopamine in rat brain using liquid chromatography coupled electrospray tandem mass spectrometry. Biochem Biophys Res Commun, 2012. 419(4): p. 632-7.
91. Wang, H.Y., et al., Determination of dopamine in injections and urine by an enzyme-catalyzed fluorescence quenching method. Analytical Sciences, 2007. 23(11): p. 1297-1300.
92. Junior, L.R., et al., Development of a new FIA-potentiometric sensor for dopamine based on EVA-copper (II) ions. Journal of Electroanalytical Chemistry, 2000. 481(1): p. 34-41.
93. Thiagarajan, S. and S.M. Chen, Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta, 2007. 74(2): p. 212-22.
94. Yang, X., J. Kirsch, and A. Simonian, Campylobacter spp. detection in the 21st century: a review of the recent achievements in biosensor development. J Microbiol Methods, 2013. 95(1): p. 48-56.
95. Yang, X.J., et al., Effect of ammonium on liquid- and gas-phase protonation and deprotonation in electrospray ionization mass spectrometry. Analyst, 2013. 138(2): p. 659-65.
96. Xue, C., et al., Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosens Bioelectron, 2013. 49: p. 199-203.
97. Wang, Y., et al., Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications, 2009. 11(4): p. 889-892.
98. Yanai, T., D.P. Tew, and N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 2004. 393(1): p. 51-57.
99. Rassolov, V.A., et al., 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry, 2001. 22(9): p. 976-984.
100. Cossi, M., et al., Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chemical Physics Letters, 1998. 286(3): p. 253-260.
101. Cances, E., B. Mennucci, and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of chemical physics, 1997. 107(8): p. 3032-3041.

QR CODE