簡易檢索 / 詳目顯示

研究生: 郭武威
Wu-Wei Kuo
論文名稱: 在地震力作用下非韌性鋼筋混凝土構架倒塌行為研究
Study on the Collapse Behavior of Nonductile Reinforced Concrete Frames Subjected to Earthquake Loadings
指導教授: 林英俊
Ing-Jaung Lin
黃世建
Shyh-Jiann Hwang
口試委員: 林建宏
none
蔡益超
none
張國鎮
none
羅俊雄
none
陳正誠
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 542
中文關鍵詞: 鋼筋混凝土倒塌剪力強度非韌性配筋搭接翼牆
外文關鍵詞: non-ductile detailing, shear strength, collapse, reinforced concrete, lap splice, wing wall
相關次數: 點閱:631下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 921集集大地震中為數不少的鋼筋混凝土建築嚴重受損甚至倒塌,並造成重大之損失。倒塌之鋼筋混凝土建築物大多都因為柱之垂直承載力喪失所致。從受損的柱發現多數為非韌性配筋,意即柱箍筋間距過大或不具備耐震135度彎鉤,而使得這些柱可能無法具備良好之消能與變形能力。因此,本研究為了要了解非韌性配筋之鋼筋混凝土柱其動態倒塌行為,遂執行四座單層三跨之非韌性配筋鋼筋混凝土構架振動台實驗,並採用921地震記錄作為輸入之地表加速度歷時。每座構架試體均由兩根韌性柱與兩根非韌性柱所組成,而變化之參數包括非韌性柱主筋在柱底端搭接之有無,與在非韌性柱旁採用翼牆補強等。
    實驗結果顯示撓曲強度主控之非韌性配筋柱,其在撓曲強度達到後,大約在3.5%至4.0%之層間側位移才會開始側力強度之衰減,而剪力破壞發生之位移約在4.5%至5.5%左右。此顯示即便是低軸力、非韌性配筋且撓曲主控之鋼筋混凝土柱,其仍有不差之位移能力。另一方面在剪力破壞後,柱體之垂直承載能力開始下降,而喪失之垂直承載力可藉由構架來進行軸向載重之重分配。
    非韌性配筋柱底端其3號主筋若採用30db之長度進行搭接,柱體之標稱彎矩強度可以發展出來。由於搭接所造成之握裹劈裂破壞,會使得柱體在單一方向產生大量之位移但強度可維持之特殊現象,不過在另一方向其位移能力則明顯小於未搭接之柱體,因此因搭接破壞造成之大量位移僅能夠在單一方向出現。30db之搭接長度應只適用於六號或六號以下之鋼筋,且必須採用甲級搭接型式,方可確保滿足現行規範之要求。
    在非韌性搭接柱旁增設翼牆,除了增加柱體之初始勁度、最大側力強度外,在延長柱體之位移能力、延緩側力強度之衰減與增加整個構架系統之穩定度上,都有顯著之效果與貢獻。在翼牆與柱體之交界面處,需注意其界面剪力強度是否足夠,如此柱牆一體聯合作用之機制才能有效發展出來,也就不會因界面破壞造成柱牆脫開,使得補強效果大打折扣。
    在分析方面,本研究建議了一套鋼筋混凝土梁、柱桿件之力傳遞機制,與側力位移曲線之評估方法。前者係考量構件之尺寸,箍筋的配置與混凝土的強度來決定桿件中D區域與B區域之大小,此與現行ACI 318-05規範只看構件尺寸來劃分D、B區域之觀點不甚相同。經與既有梁之測試資料庫比對後顯示,現行規範之方法簡單且有效,而本研究建議方法雖較為複雜,但其確實考量剪力之傳遞機制與相關破壞模式,故有再研究發展之空間。本文建議之側力位移曲線之評估方法,係先計算桿件之強度以便區分破壞模式,共分為撓剪破壞與撓曲破壞兩種,而各自都有其所對應之側力位移曲線。建議之側力位移曲線與四個試體之實驗曲線比對,顯示兩座原型試體有較好的預測結果,但在搭接試體與翼牆補強試體則無法反映出因搭接破壞引致位移放大之側力位移關係。
    本文之最後一部分,係將目前既有之側力位移曲線預測方法與實驗曲線進行比對,以確認各方法在動態倒塌構架上之適用性。結果顯示Zhu et al.有最貼近實驗側力位移曲線之預測,而現行規範ASCE 41之修正版本仍屬保守,卻已大大改善FEMA 356 在位移預測上過於保守之缺失,並且也修正FEMA 356初期勁度過大之問題。


    During the 1999 Chi-Chi Taiwan earthquake, a large number of older buildings sustained severe damage or complete failure, and there were thousands of casualties and a great loss of property. A large majority of building collapse resulted from the loss of vertical-load carrying capacities of columns. Most of damaged columns were found with non-ductile detailing, such as widely spaced hoops with 90 degree end hooks. These columns are known to have poor seismic performance in terms of ductility and energy dissipation capacity. Therefore, shake table tests of four 1-story-3-bay reinforced concrete frames using 921 earthquake records were conducted to study the dynamic collapse behavior of non-ductile columns. Each specimen was composed of 2 ductile columns and 2 non-ductile columns. Test variables considered were lap splice on longitudinal bars at the bottom of non-ductile columns and retrofitting using wing walls.
    Test results showed that the onset of degradation of lateral resistance was about at the story drift ratio of 3.5% to 4.5% for non-ductile columns dominated by flexural strength, and shear failure took place at the drift ratio of around 4.5% to 5.5%. This indicated that nonductile reinforced concrete columns with low axial loads, dominated by flexural strength, provided acceptable drift capacity. After shear failure, the axial load carrying capacity of nonductile columns started to decrease, and the axial load could be redistributed by the frame system.
    No.3 rebars of 30db lap splice lengths in non-ductile columns could yield and the section reached the nominal flexural strength, although the hoops were widely spaced with non-seismic end hooks. Bond slip failure of columns caused different response in positive and negative direction. The large deformation along with sustained strength after bond slip failure of lap splice could occur only once in this study, which was not observed in the negative direction. Therefore, the drift capacity was less than that of columns without any lap splice. However, if larger rebars (no smaller than No. 7) with 30db lap splice lengths in real full scaled structures, the required lap splice lengths calculated from current ACI 318-05 code will exceed 30db; therefore, lap splice lengths of 30db is only allowable for small size rebars (no larger than No. 6).
    Retrofitted using wing walls not only increased the initial stiffness and lateral resistance of nonductile columns, but also obviously enlarged the drift capacity, slowed down the degradation of lateral resistance and increased the stability of the frame system. However, due to the separation of wing walls from columns at the early stage, the combination of these elements could not be developed effectively; therefore, in practice the interface shear capacity should be checked in advance to avoid failure occurred as in this study.
    On the other hand, force transfer mechanism of reinforced concrete beam column elements and methods on how to establish the force displacement curve of columns were also proposed in this study. The proposed force transfer mechanism, considering the size of members, transverse reinforcement and concrete strength to determine the domain of D and B regions of elements, has conceptual discrepancies with the current ACI 318-05 code, which assumes that the dimension of the D-region is only related to the height of the member. Comparing the solutions of the proposed method with the 198 test data from the literature, the ACI 318-05 code provides a simple and effective design procedure for the shear strength estimation, while the proposed approach is more complicated but bears more physical significance. The proposed force displacement curves, including flexural failure and flexural shear failure, were compared with experimental results. Two prototype specimens could be reasonably predicted, while the large displacement caused by lap splice failure was unable to be modeled accurately.
    Finally, four existing methods to predict the force displacement relationship were compared with the test results to verify the applicability of predictive models under dynamic loadings. Predications by Zhu et al. showed the closest trend with experimental curves, and the updated version of ASCE/SEI 41-06 code gave the conservative predictions on drift capacity, which improved the over conservatism of drift capacity and unrealistic initial stiffness predicted by FEMA 356.

    中文摘要 英文摘要 誌謝 表索引 V 圖索引 VII 符號說明 XXI 第一章 緒論 1.1 研究背景 1 1.2 研究目的與範疇 2 1.3 研究方法 3 1.4 預期成果與本文架構 4 第二章 文獻回顧 2.1 前言 5 2.2 振動台實驗 5 2.2.1 ELWOOD雙跨單層構架振動台實驗 5 2.2.2 GHANNOUN三跨三層構架振動台實驗 6 2.2.3吳俊霖單跨單層構架振動台實驗 7 2.3 柱側力位移曲線預測 7 2.3.1 ELWOOD AND MOEHLE之預測公式 7 2.3.2 ZHU AND ELWOOD之預測公式 8 2.3.3 FEMA 356與ASCE/SEI 41-06之預測公式 10 2.3.4 ASCE/SEI 41-06 UPDATE之預測公式 11 2.3.5涂耀賢之預測公式 12 第三章 試驗規劃 3.1 試驗背景 19 3.2 試體設計 19 3.2.1 原型試體 20 3.2.2 柱主筋搭接試體 23 3.2.3 翼牆補強試體 24 3.3 試體製作 25 3.4 試體安裝與試驗佈置 28 3.5 量測系統 30 3.6 地震歷時輸入 31 3.7 測試步驟 32 第四章 試驗結果與討論 4.1 前言 35 4.2 材料試驗 35 4.3 振動台反應 35 4.4 柱之初始軸力 36 4.5 原型試體P1試體結果 37 4.6 柱主筋搭接試體L試體結果 51 4.7 原型試體P2試體結果 65 4.8 翼牆補強試體W試體結果 75 第五章 不同結構參數之影響與比較 5.1 前言 91 5.2 原型試體P1與原型試體P2比較 91 5.3 原型試體P1與柱主筋搭接試體L比較 94 5.4 柱主筋搭接試體L與翼牆補強試體W比較 98 5.5 原型試體P2與翼牆補強試體W比較 103 第六章 預測模型與試驗結果之比較 6.1 前言 109 6.2 梁傳力機制與強度預測模型 109 6.2.1 前言 109 6.2.2 現行ACI 318-05規範方法 110 6.2.3 建議模型 112 6.2.4 試驗值與分析之比對 117 6.2.5 參數分析 124 6.2.6 小結 125 6.3 柱傳力機制與強度預測模型 126 6.4 柱側力強度點之位移預測 131 6.5 柱撓剪破壞起始點之位移預測 136 6.6 柱側力位移曲線之預測 138 6.6.1 柱體破壞模式之認定 138 6.6.2 撓剪破壞側力位移曲線之建立 139 6.6.3 撓曲破壞側力位移曲線之建立 141 6.6.4 柱體強度與破壞模式之預測結果 141 6.6.5 柱側力位移曲線預測結果 145 6.7 現有分析模型之比較 149 第七章 結論與建議 7.1 前言 155 7.2 結論與建議 155 7.2.1 實驗觀察 155 7.2.2 分析結果 157 7.2.3 小結 159 7.3 未來研究展望 159 參考文獻 163 本文圖表 171 附錄 A 實驗資料處理 493 B 量測儀器其編號及說明 496 C TCU082地震記錄歷時 508 D 柱體側力位移曲線計算範例 508 E 數位影像量測與傳統位移計LTDS之差異 537 作者簡介

    1. 內政部,建築研究所,「921集集大地震建築物震害調查初步報告」,內政部建築研究所,台北,民國八十八年。
    2. 吳俊霖、楊元森、羅俊雄,「對建築物的極限考驗:動態崩塌研究」,國研科技,第八期,第43-51頁,民國九十四年。
    3. Moehle, J., “Performance-Bases Earthquake Engineering,” presentation file of EERI 2005 Distinguished Lecture (2005).
    4. Elwood, K., Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames, PhD dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley (2002).
    5. Elwood, K.J., and Moehle, J.P., “Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames,” PEER report 2003/01. Berkeley, Calif.: Pacific Earthquake Engineering Research Center, University of California (2003).
    6. Ghannoum, W. M., Shin, Y. B., and Moehle, J., “Collapse Tests of Lightly Confined Reinforced Concrete Columns and Frames,” Proceedings of The First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures, Berkeley, USA, July 6-8, pp. 103-118 (2005)
    7. Ghannoum, W. M., Experimental and Analytical Dynamic Collapse Study of a Reinforced Concrete Frame with Light Transverse Reinforcement, PhD dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley (2007).
    8. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02), American Concrete Institute, Farmington Hills, Mich., 443 pp (2002).
    9. Joint ACI-ASCE Committee 352, “Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures (ACI 352R-02),” American Concrete Institute, Farmington Hills, Mich., 40 pp (2002).
    10. Wu, C. L., Yang, Y. S., and Loh, C. H., “Global Dynamic Collapse of SDOF RC Frames under Extreme Earthquake Loading,” Proceedings of The First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures, Berkeley, USA, July 6-8, pp. 119-132 (2005).
    11. Elwood, K. and Moehle, J., “Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement,” Earthquake Spectra, EERI, Vol. 21, No. 1, pp. 71-89 (2005).
    12. Elwood, K. and Moehle, J., “Axial Capacity Model for Shear-Damaged Columns,” ACI Structural Journal, Vol. 102, No. 4, pp. 578-587 (2005).
    13. Zhu, L., “Probabilistic Drift Capacity Models for Reinforced Concrete Columns,” MASc thesis, Department of Civil Engineering, University of British Columbia, Vancouver, Canada (2005).
    14. Zhu, L., Elwood, K. and Haukaas, T., “Classification and Seismic Safety Evaluation of Existing Reinforced Concrete Columns,” Journal of Structural Engineering, ASCE, Vol. 133, No. 9, pp. 1316-1330 (2007).
    15. Sezen H. And Moehle J.P., “Shear Strength Model for Lightly Reinforced Concrete Columns,” Journal of Structural Engineering, ASCE, 130(11): 1692-1703 (2004).
    16. FEMA 273, NEHRP Guidelines for the Rehabilitation of Byuildings, FEMA Publication No. 273, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, D.C. (1997)
    17. FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings.Federal Emergency Management Agency, Washington, D.C. (2000)
    18. ASCE/SEI 41-06, “Seismic Rehabilitation of Existing Buildings,” American Society of Civil Engineers, Reston, V.A. (2007)
    19. Sezen H. and Moehle J.P., “Seismic Tests of Concrete Columns with Light Transverse Reinforcement,” ACI Structural Journal, 103(6): 842-849 (2006).
    20. EERI/PEER, New Information on the Seismic Performance of Existing Concrete Buildings,Seminar Notes, Earthquake Engineering Research Institute, Oakland, Calif. (2006)
    21. Elwood K.J., Matamoros A.B., Wallace J.W., Lehman D.E., Heintz J.A., Mitchell A..D., Moore M.A., Valley M.T., Lowes L.N., Comartin C.D., and Moehle J.P., “Update to ASCE/SEI 41 Concrete Provisions,” Earthquake Spectra, 23(3): 493-523 (2007).
    22. 涂耀賢,「低矮型RC牆暨構架之側向載重位移曲線預測研究」,博士論文,國立台灣科技大學營建工程系,台北,民國94年1月。
    23. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute, Farmington Hills, Mich. (2005).
    24. Moehle, J. P., “Displacement-Based Design of RC Structures Subjected to Earthquakes,” Earthquake Spectra, Vol. 8, No. 3, pp. 403-428 (1992).
    25. Hwang, S. J., and Lee, H. J., “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, 128(12), pp. 1519-1526 (2002).
    26. 李宏仁、黃世建,「鋼筋混凝土結構不連續區域之剪力強度評估-軟化壓拉桿模型簡算法之實例應用」,結構工程,第十七卷,第四期,第53-70頁,民國91年。
    27. Tu, Y. S., Hwang, S. J., and Yu, H. W., “Prediction of Load Deflection Responses of Low Rise Shear Walls,” Proceeding of 100th Anniversary Earthquake Conference, April 18-22, San Francisco, U.S.A. (2006)
    28. Vecchio, F. J., and Collins, M. P., “Compression Response of Cracked Reinforced Concrete,” Journal of Structural Engineering, ASCE, Vol. 119, No. 12, pp. 3590-3610 (1993).
    29. Zhang, L. X. B., and Hsu, T. T. C., “Behavior and Analysis of 100MPa Concrete Membrane Elements,” Journal of Structural Engineering, ASCE, Vol. 124, No. 1, pp. 24-34 (1998).
    30. Hwang, S. J., and Lee, H. J., “Analytical Model for Predicting Shear Strengths of Exterior Reinforced Concrete Beam-Column Joints for Seismic Resistance.” ACI Structural Journal, Vol. 96, No. 5, pp. 846-857 (1999).
    31. Hwang, S. J., and Lee, H. J., “Analytical Model for Predicting Shear Strengths of Interior Reinforced Concrete Beam-Column Joints for Seismic Resistance,” ACI Structural Journal, Vol. 97, No. 1, pp. 35-44 (2000).
    32. Hwang, S. J., Lu, W. Y., and Lee, H. J., “Shear Strength Prediction for Deep Beams,” ACI Structural Journal, Vol. 97, No. 3, pp. 367-376 (2000).
    33. Hwang, S. J., Yu, H. W., and Lee, H. J., “ Theory of Interface Shear Capacity of Reinforced Concrete,” Journal of Structural Engineering, ASCE, Vol. 126, No. 6, pp. 700-707 (2000).
    34. Hwang, S. J., Lu, W. Y., and Lee, H. J., “Shear Strength Prediction for Reinforced Concrete Corbels,” ACI Structural Journal, Vol. 97, No. 4, pp. 543-552 (2000).
    35. Hwang, S. J., Fang, W. H., Lee, H. J., and Yu, H. W., “Analytical Model for Predicting Shear Strengths of Squat Walls,” Journal of Structural Engineering, ASCE, Vol. 127, No. 1, pp. 43-50 (2001).
    36. Lu, W. Y., Lin, I. J., Hwang, S. J., and Lin, Y. H., “Shear Strength of High-Strength Concrete Dapped-End Beams,” Journal of the Chinese Institute of Engineers, Vol. 26, No. 5, pp. 671-680 (2003).
    37. Lin, I. J., Hwang, S. J., Lu, W. Y., and Tsai, J. T., “Shear Strength of Reinforced Concrete Dapped-End Beams,” Structural Engineering and Mechanics, Vol. 16, No. 3, September, pp. 275-294 (2003).
    38. Schäfer, K., “Strut-and-Tie Models for the Design of Structural Concrete,” Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, p. 140 (1996).
    39. Jennewein, M., and Schäfer, K., “Standardisierte nachweise von häufigen D-Bereichen,” DAfStb. Heft No. 430, Beuth-Verlag, Berlin (1992). (in German)
    40. Foster, S. J., and Gilbert, R. I., “The Design of Nonflexural Members with Normal and High-strength Concretes,” ACI Structural Journal, Vol. 93, No. 1, pp. 3-10 (1996).
    41. Sezen, H., “Seismic Response and Modeling of Reinforced Concrete Building Columns,” Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley (2002).
    42. Vian, D. and Bruneau, M., “Tests to Structural Collapse of Single Degree of Freedom Frames Subjected to Earthquake Excitations,” Journal of Structural Engineering, ASCE, Vol. 129, No. 12, pp. 1676-1685 (2003).
    43. Kim, Y. and Kabeyasawa, T., “Dynamic Test and Analysis of An Eccentric Reinforced Concrete Frame to Collapse,” Proc. of the 13th World Conference on Earthquake Engineering, Paper No. 381, Vancouver, B.C., Canada, August 1-6 (2004).
    44. Gentry, T. R., and Wight, J. K., “Wide Beam-Column Connections under Earthquaketype Loading,” Earthquake Spectra, Vol. 10, No. 4, pp. 675-703 (1994).
    45. Popov, E. P., Cohen, J. M., Koso-Thomas, K., and Kasai, K., “Behavior of Interior Narrow and Wide Beams,” ACI Structural Journal, Vol. 89, No. 6, pp. 607-616 (1992).
    46. Hatamoto, H., Bessho, S., and Matsuzaki, Y., “Reinforced Concrete Wide-Beam-to- Column Subassemblages Subjected to Lateral Load,” Design of Beam-Column Joints for Seismic Resistance, SP-123, American Concrete Institute, Farmington Hills, Michigan, pp. 291-316 (1991).
    47. Tassios, T. P., “Modelling of Structures Subjected to Seismic Loading,” Small Scale Modelling of Concrete Structures, 229-271, Elsevier Science, New York (1992).
    48. Melek, M., and Wallace, J. W., “Cyclic Behavior of Columns with Short Lap Splices,” ACI Structural Journal, Vol. 101, No. 6, pp. 802-811 (2004).
    49. 中國土木水利工程學會混凝土工程委員會,「混凝土工程設計規範與解說(土木401-86a)」,科技圖書公司,台北縣土城市,民國87年。
    50. 黃世建、張弘彬,「含RC翼牆非韌性構架耐震評估與補強之研究(Ⅱ)」,國家地震中心研究報告,NCREE-03-046,台北,210頁,民國92年。
    51. 黃世建、游倩文,「含RC翼牆構架之耐震補強研究」,國家地震中心研究報告,NCREE-04-011,台北,187頁,民國93年。
    52. Hwang, S. J., Tu, Y. S., Yeh, Y. H., and Chiou, T. C., “Reinforced Concrete Partition Walls Retrofitted with Carbon Fiber Reinforced Polymer,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Special Issue, December, pp. 795-803 (2004).
    53. Chang, K. C. and F. S. Jong, Seismic Retrofit of Shear and Lap Splice of RC Rectangular Bridge Columns using FRP Laminates, Report No. NCREE-00-034, National Center for Research on Earthquake Engineering, Taipei, Taiwan (2000). (in Chinese)
    54. Hwang, J. S. and M. Y. Guo, Seismic Retrofit of Shear and Lap Splice of RC Bridge Columns, Report No. NCREE-00-005, National Center for Research on Earthquake Engineering, Taipei, Taiwan (2000). (in Chinese)
    55. Hwang, S. J., and Kuo, W. W., “Recent Advances in Seismic Retrofit of RC Structures in Taiwan,” Proceedings of the Joint NCREE/JRC Workshop International Collaboration Disaster Mitigation Research, Taipei, Taiwan, November, pp. 291-300 (2003).
    56. 王勇智、高啟洲、楊政達,「鋼筋混凝土擴柱對梁柱接頭抗剪能力提昇之研究」,中國土木水利工程學刊,第十五卷,第三期,第521-530頁,民國92年。
    57. American Society for Testing and Materials, “ASTM Standards,” ASTM International, West Conshohocken, PA. (2008)
    58. 經濟部標準檢驗局,「中國國家標準CNS」,經濟部,台北,民國97年。
    59. Y.S. Yang and C.L. Wu (Program developers), ImPro, In-house Computer Code, National Center for Research on Earthquake Engineering, Taiwan (2004).
    60. 楊元森,吳俊霖,涂文祥,楊仲民,陳安貞,羅俊雄,「影像式實驗量測初步研究與ImPro 軟體」,國家地震工程研究中心96年精簡研究報告,台北,台灣,民國96年。
    61. 施明祥,童士恒,楊元森,「現地試驗影像量測」校舍耐震補強現地實驗成果研討會論文集,國家地震工程研究中心NCREE-08-001,pp. 125-141,民國97年1月25日。
    62. Wallace, J. W., “BIAX: Revision 1 A Computer Program for the Analysis of Reinforced Concrete and Reinforced Masonry Sections,” Report No. CU/CEE-92/4, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York, February 1992.
    63. MacRae, G. A., “P- Effects on Single-Degree-of-Freedom Structures in Earthquakes,” Earthquake Spectra, 10(3): 539-568 (1994).
    64. Hakuto S., Park R., Tanaka H., “Seismic Load Tests on Interior and Exterior Beam-Column Joints with Substandard Reinforcing Details,” ACI Structural Journal, 97(1): 11-25 (2000).
    65. Elwood, K., personal contact (2008).
    66. Kabeyasawa, T., Tasai, A., and Igarashi, S., “An Economical and Efficient Method of Strengthening Reinforced Concrete Columns Against Axial Load Collapse during Major Earthquake,” Third US-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Seattle, WA, PEER report 2002/02. Berkeley, Calif.: Pacific Earthquake Engineering Research Center, University of California, pp. 399-412 (2002).
    67. Nakamura, T., and Yoshimura, M., “Gravity Load Collapse of Reinforced Concrete Columns with Brittle Failure Modes,” Journal of Asian Architecture and Building Engineering, Vol. 1, No. 1, pp. 21-27 (2002).
    68. Aboutaha, R., Engelhardt, M. D., Jiras, J. O., and Kreger, M. E., “Retrofit of Concrete Columns with Inadequate Lap Splice by the Use of Rectangular Steel Jackets,” Earthquake Spectra, Vol. 12, No. 4, pp. 693-714 (1996).
    69. Chai, Y. H., Priestley. M. J. N., and Seible, F., “Seismic Retrofit of Circular Bridges Columns for Enhance Flexural Performance,” ACI Structural Journal, Vol. 88, No. 5, pp. 572-584 (1991).
    70. Lynn, A. C., Moehle, J. P., Mahin, S .A., and Holmes, W. T., “Seismic Evaluation of Existing Reinforced Concrete Building Columns,” Earthquake Spectra, Vol. 12, No. 4, pp. 715-739 (1996).
    71. Ritter, W., “The Hennebique Design Method (Die Bauweise Hennebique),” Schweizerische Bauzeitung, Vol. 33, No. 7, pp. 59-61 (1899).
    72. Mörsch, E., Concrete-Steel Construction, Translation of the 3rd German Edition by E. P. Goodrich, McGraw-Hill Book Co., New York, 368 pp (1909).
    73. ACI-ASCE Committee 426, “Shear Strength of Reinforced Concrete Members (ACI 426R-74) (Reapproved 1980),” Proceedings, ASCE, V. 99, No. ST6, June 1973, pp. 1148-1157.
    74. ASCE-ACI Committee 445, “Recent Approaches to Shear Design of Structural Concrete,” Journal of Structural Engineering, ASCE, Vol. 124, No. 12, December 1998, pp. 1375-1417.
    75. Schlaich, J., Schäfer, K., and Jennewein, M., “Toward a Consistent Design of Reinforced Concrete Structures,” PCI Journal, Vol. 32, No. 3, pp. 74-150 (1987).
    76. MacGregor, J. G., Reinforced Concrete: Mechanics and Design, 3rd Edition, Prentice Hall Inc., Englewood Cliffs, NJ, 939pp (1997).
    77. Collins, M. P., and Mitchell, D., Prestressed Concrete Structures, Prentice Hall Inc., Englewood Cliffs, NJ, 766pp (1991).
    78. ACI-ASCE Committee 326, “Shear and Diagonal Tension,” ACI Journal, Proceedings V. 59, No. 1, 1962, pp. 1-30; No. 2, 1962, pp. 277-334; No. 3, 1962, pp. 352-396.
    79. 陳穎治,「鋼筋混凝土梁桿件塑鉸剪力強度衰減之研究」,碩士論文,國立台灣科技大學營建工程系,台北,179頁,民國93年7月。
    80. Thürlimann, B., “Torsional Strength of Reinforced and Prestressed Concrete Beams – CEB Approach,’’ Bulletin 113, ACI Publication SP-59, Detroit, Mich. (1979).
    81. Moretto, O., “An Investigation of the Strength of Welded Stirrups in Reinforced Concrete Beams,” ACI Journal, Proceedings V. 42, No. 2, pp. 141-162 (1945).
    82. Clark, A. P., “Diagonal Tension in Reinforced Concrete Beams,” ACI Journal, Proceedings V. 48, No. 2, pp. 145-156 (1951).
    83. Moody, K. G.; Viest, I. M.; Elstner, R. C.; and Hognestad, E., “Shear Strength of Reinforced Concrete Beams-Parts 1 and 2,” ACI Journal, Proceedings V. 51, No. 4, pp. 317-332 (1954); No. 5, pp. 417-434 (1955).
    84. Rodriguez, J. J.; Bianchini, A.C.; Viest, I. M.; and Kesler, C. E., “Shear Strength of Two-Span Continuous Reinforced Concrete Beams,” ACI Journal, Proceedings V. 55, No. 10, pp. 1089-1130 (1959).
    85. Elstner, R. C.; Moody, K. G.; Viest, I. M.; and Hognestad, E., “Shear Strength of Reinforced Concrete Beams, Part 3-Tests of Restrained Beams with Web Reinforcement,” ACI Journal, Proceedings V. 26, No. 6, pp. 525-539 (1955).
    86. Mphonde, A. G., “Shear Strength of High-Strength Concrete Beams,” PhD thesis, University of Connecticut, 249pp (1984).
    87. Elzanaty, A. H.; Nilson, A. H.; and Slate, F. O., “Shear Capacity of Reinforced Concrete Beams Using High-Strength Concrete,” ACI Journal, Proceedings Vol. 83, No. 2, pp. 290-296 (1986).
    88. Johnson, M. K., and Ramirez, M. P., “Minimum Shear Reinforcement in Beams with Higher Strength Concrete,” ACI Structural Journal, Vol. 86, No. 4, pp. 376-382 (1989).
    89. Roller, J. J., and Russell, H. G., “Shear Strength of High-Strength Concrete Beams with Web Reinforcement,” ACI Structural Journal, Vol. 87, No. 2, pp. 191-198 (1990).
    90. Sarsam, K. F., and Al-Musawi, J. M. S., “Shear Design of High- and Normal Strength Concrete Beams with Web Reinforcement,” ACI Structural Journal, Vol. 89, No. 6, pp. 658-664 (1992).
    91. Xie, Y., Ahmad, S. H., Yu, T., Hino, S., and Chung, W., “Shear Ductility of Reinforced Concrete Beams of Normal and High-Strength Concrete,” ACI Structural Journal, Vol. 91, No. 2, pp. 140-149 (1994).
    92. Kong, P. Y. L., and Rangan, B. V., “Shear Strength of High-Performance Concrete Beams,” ACI Structural Journal, Vol. 95, No. 6, pp. 677-688 (1998).
    93. ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-83)”, American Concrete Institute, Detroit, 111 pp. (1983).
    94. 陳雅婷,「台灣中小學校舍結構耐震能力評估之研究」,碩士論文,國立台灣科技大學營建系,台北,198頁,民國95年。
    95. Aschheim, M., and Moehle, J. P., “Shear Strength and Deformability of Reinforced Concrete Bridge Columns Subjected to Inelastic Cyclic Displacement,” Report No. UCB/EERC-92/04, Earthquake Engineering Research Center, University of California at Berkeley, March (1992).
    96. Priestley, M. J. N., Verma, R., and Xiao, Y., “Seismic Shear Strength of Reinforced Concrete Column,” Journal of Structural Engineering, ASCE, Vol. 120, No.8, August (1994).
    97. Watanabe, F., and Ichinose, T., “Shear and Ductility of Reinforced Concrete Members Subjected to Combined Bending and Shear,” Proceedings of the International Workshop on Concrete Shear in Earthquake, University of Houston, Texas, January (1991).
    98. Priestley, M. J. N., “Myths and Fallacies in Earthquake Engineering - Conflicts Between Design and Reality,” Bulletin of The New Zealand National Society for Earthquake Engineering, Vol. 26, No. 3, September, pp. 329-341 (1993).
    99. 徐建稷,「鋼筋混凝土構件在反覆載重作用下之行為研究」,碩士論文,國立台灣科技大學營建系,台北,127頁,民國89年。
    100. TRC/Imbsen Software Systems, “XTRACT: cross-sectional X sTRuctural Analysis of ComponenTs”, version 2.6.2, Rancho Cordova, CA (2002).
    101. Berry, M., and Eberhard, M., “Practical Performance Model for Bar Buckling”, Journal of Structural Engineering, ASCE, Vol. 131, No. 7, pp. 1060-1070 (2005).
    102. Park, R., Priestley, M. J. N., and Gill, W. D., “Ductility of Square-Confined Concrete Columns,” the Journal of Structural Division, ASCE, Vol. 108, No. ST4, pp. 929-950 (1982).
    103. 翁樸文,「鋼筋混凝土短柱受剪破壞之耐震行為曲線研究」,碩士論文,國立台灣科技大學營建系,台北,214頁,民國96年。

    QR CODE