簡易檢索 / 詳目顯示

研究生: 朱慶霖
QING-LIN ZHU
論文名稱: 異質銲件熱浸鍍鋁層於高溫應用之破壞機制
Failure Mechanism of the Hot-dipped Aluminide Coating on Dissimilar Weldments in High Temperature Applications
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 程金保
none
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 異質銲接高溫氧化熱浸鍍鋁GTAW
外文關鍵詞: Dissimilar Weldments, High-Temperature Oxidation, Hot-Dip Aluminum, GTAW
相關次數: 點閱:350下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用AISI 309L為銲料,利用鎢極氣體保護電弧銲(GTAW)進行AISI 1015低碳鋼與AISI 304不銹鋼異質銲接,將銲接部位熱浸鍍純鋁後於750oC空氣氣氛進行高溫氧化。此外,藉由ANSYS模擬銲接試片於高溫環境的熱應力分佈情況,再將實驗結果與熱應力模擬結果進行比對,分析熱應力對鋁化層的破壞行為。結果顯示,鋁化層於750 oC高溫擴散後因銲接材料的熱膨脹係數差異,導致試片內於升溫過程產生熱應力,使低碳鋼熔融區(FZL)上介金屬層產生升溫裂紋,並在短時間高溫擴散後即剝離。在高溫持溫擴散過程中,鋁化層內Kirkendall孔洞與升溫裂紋開始成長且Kirkendall孔洞逐漸聚集,直至孔洞與裂紋連接形成連續裂縫,導致低碳鋼熱影響區(HAZL)鋁化層剝離。


Gas tungsten arc welding (GTAW)was applied to join AISI 304 stainless steel and AISI 1015 carbon steel with consumable – AISI 309L stainless steel wires. The oxidation test was performed by placing weldments at 750 ℃ after hot-dip pure aluminum. Welded specimen’s thermal stress distribution under high-temperature environment was simulated by ANSYS.The experimental results are compared with the results of simulation and determine the damage of intermetallic scale. The result shows that because of the thermal expansion coefficient difference between welded materials, causes thermal stress to occur during heating process , and heating cracks inside the scale above the Fusion zone of Low carbon steel(FZL).The aluminide scale will Strip after High-temperature diffusion in a short time. The Kirkendall voids and heating cracks inside the aluminide layer grows during the high temperature diffusion. The voids inside the aluminum layer will congest, until the holes were connected with cracks to form a continuous cracks and cause aluminide scale on HAZL to peel off.

第一章 前言 第二章 文獻回顧 2.1 電弧銲接 2.1.1 鎢極氣體保護電弧銲 2.1.2 銲接件結構定義 2.2 異質金屬之銲接 2.2.1 硬度銲接 2.2.2 銲接熱應力(殘留應力) 2.2.3 銲接熱應力的生成 2.2.4 熱應力的模擬 2.2.5 銲接缺陷成長行為 2.3 熱浸鍍鋁 2.3.1 碳鋼熱浸鍍純鋁鋁化層結構 2.3.2 不鏽鋼熱浸鍍純鋁鋁化層結構 2.3.3 鋁化層高溫擴散相變化 2.3.4 鋁化層孔洞之形成 2.3.5 鋁化層內孔洞的抑制 第三章 實驗方法 3.1 實驗流程 3.2 試片準備 3.3 異質銲接試片分析 3.3.1 顯微組織 3.3.2 銲接缺陷檢測 3.4 熱浸鍍鋁流程 3.4.1 試片前處理 3.4.2 熱浸鍍鋁作業 3.4.3 試片後處理 3.5 高溫擴散實驗 3.5.1 實驗架構 3.5.2 有限空間高溫擴散實驗 3.5.3 懸掛式高溫擴散實驗 3.5.4 高溫滲鹽裂縫檢測實驗 3.6 分析設備與分析方法 3.6.1 分析設備 3.6.2 分析方法 第四章 實驗結果 4.1 異質銲接試片熱浸鍍鋁後試片分析 4.2 高溫擴散 4.2.1 有限空間高溫擴散 4.2.2 懸掛式高溫擴散 4.2.3 高溫滲鹽裂縫檢測 4.3 熱應力模擬 4.3.1 有限空間高溫擴散試片熱應力模擬 4.3.2 懸掛式高溫擴散試片熱應力模擬 第五章 討論 5.1 裂縫與孔洞的生成 5.2 試片擺放情形對生成熱應力之影響 5.3 高溫擴散過程熱應力對鋁化層破壞行為 5.3.1 升溫過程試片內熱應力對鋁化層之破壞(第一階段) 5.3.2 高溫持溫過程試片內熱應力對鋁化層之破壞(第二階段) 5.4 升溫裂紋對孔洞率成長之影響 5.5 製程改善 5.5.1 緩慢升溫有限空間高溫擴散 5.5.2 鋁化層厚度控制 第六章 結論 參考文獻

1.W. Wu, S. Hu, J. Shen, “Microstructure, Mechanical Properties and Corrosion Behavior of Laser Welded Dissimilar Joints Between Ferritic Stainless Steel and Carbon Steel,” Materials and Design, Vol. 65, pp. 855-861( 2014).
2.J. D. Farren, J. N. Dupont, and F. F. Noeker, “Fabrication of a Carbon Steel-to-Stainless Steel Transition Joint Using Direct Laser Deposition-A Feasibility Study,” Weld. J. Vol. 86, p. 55 (2007).
3.蔡昆哲,"低碳鋼於氯化鈉之熱腐蝕機制及熱浸鋁之防制改善",國立台灣科技大學機械所碩士論文,民國103年。
4.M. Jafarzadegan, A. Abdollah-zadeh, A.H. Feng, T. Saeid, J. Shen, H. Assadi, “Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel,” J. Mater. Science, Vol. 29, pp. 367-372( 2013).
5.D. Wang, Z. Shi, L. Zou, “A Liquid Aluminum Corrosion Resistance Surface on Steel Substrate,” Applied Surface Science, Vol. 214, pp. 304-311 (2003).
6.W. J. Cheng, C. J. Wang, “High-Temperature Oxidation Behavior of Hot-Dipped Aluminide Mild Steel with various silicon contents,” Applied Surface Science, 274, pp. 258-265 (2013).
7.鄭維仁,"鉻鉬鋼熱浸鋁矽後鋁化層之顯微結構與高溫相變化行為",國立台灣科技大學機械所博士論文,民國101年。
8.W. J. Cheng, C. J. Wang, “Study of Microstructure and Phase Evolution of Hot-Dipped Aluminide Mild Steel During High-Temperature Diffusion Using Electron Backscatter Diffraction,” Applied Surface Science, Vol. 257, pp. 4663-4668 (2011).
9.M. B. Lin , C. J. Wang , A. A. Volinsky, “Isothermal and Thermal Cycling Oxidation of Hot-Hip Aluminide Coating on Flake/Spheroidal graphite cast iron,”Surface & Coatings Technology, Vol. 206, pp. 1595-1599 (2011).
10.王振欽,"銲接學",登文書局,民國74年。
11.Sindo Kou, "Weing Metallurgy," Wiley Interscience, 2nd Edition, 2002.
12.姜志華、蔡金峯,"銲接冶金概論",徐氏基金會,民國76年。
13.I. Hajiannia, M. Shamanian, and M. Kasiri, “Microstructure and Mechanical Properties of AISI 347 Stainless Steel/A335 Low Alloy Steel Dissimilar Joint Produced by Gas Tungsten Arc Welding,” Materials and Design, Vol. 50, pp. 566-573 (2013).
14.E. Gharibshahiyan, A. H. Raouf, Nader Parvin, Mehdi Rahimian, “The Effect of Microstructure on Hardness and Toughness of Low Carbon Welded Steel Using Inert Gas Welding,” Materials and Design, Vol. 32, pp. 2042-2048 (2011).
15.H. Zhao, G. Zhang, Z. Yin, Lin Wu, “Three - Dimensional Finite Element Analysis of Thermal Stress in Single-Pass multi-layer weld-based rapid prototyping,” Journal of Materials Processing Technology, Vol. 212, pp. 276-285 (2012).
16.J. Łabanowski, “Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints,” Journal of Achievements in Materialsand Manufacturing Engineering,” Vol. 20, pp. 255-258 (2007).
17.R. G. Budynas, J. K. Nisbett, "Shigley’s Mechanical Engineering Desigh, " McGraw Hill , 2011.
18.M. Vural , A. Akkus﹐, B. Eryurek, “Effect of Welding Nugget Diameter on The Fatigue Strength of The Resistance Spot Welded Joints of Different Steel Sheets,”Journal of Materials Processing Technology, Vol. 176, pp. 127-132 (2006).
19.K. Bouche’ , F. Barbier a, A. Coulet, “Intermetallic Compound Layer Growth Between Solid Iron and Molten Aluminium,” Materials Science and Engineering A, Vol. 249, pp. 167-175 (1998).
20.F. Barbier, D. Manuelli and K. Bouchk e’, “Characterization of Aluminide Coatings Formed on 1.4914 and 316L Steels by Hot-Dipping in Molten Aluminium,” Scripta Materialia, Vol. 36, pp. 425-431 (1997).
21.H. Glasbrenner , K. Stein-Fechner, J. Konys, “Scale Structure of luminised F82H-mod. Steel after HIP Treatment,” Fusion Engineering and Design A, Vol. 363, pp. 53-61 (2003).
22.A. Bouayad , Ch. Gerometta, A. Belkebir, A. Ambari, “Kinetic interactions between solid iron and molten aluminium,” Materials Science and Engineering A, Vol. 363, pp. 53-61 (2003).
23.鄭維仁、王朝正,防蝕工程,第22卷第4期,2008,第287 ~ 294頁。
24.許芷寧,"碳鋼中顯微組織對熱浸鍍鋁之作用",國立台灣科技大學機械所碩士論文,民國100年。
25.J. L. Murray and A. J. Mcalister, “Fe-Al Phase Diagram,” Binary Alloy Phase Diagram, pp. 73 (1984).
26.Shigeaki Kobayashi, Takao Yakou, “Control of Intermetallic Compound Layers at Interface Between Steel and Aluminum by Diffusion-Treatment,” Scripta Materialia, Vol. 36, pp. 425-431 (1997).
27.Martin C. J. Marker, B. Skolyszewska-Kuhberger, H. S. Effenberger, Clemens Schmetterer, Klaus W. Richter, “Phase Equilibria and Structural Investigations in The System Al-Fe-Si,” Intermetallics, Vol. 19, pp. 1919-1929 (2011).
28.滿志謙,"高溫應力對低碳鋼熱浸鍍鋁層之影響",國立台灣科技大學機械所碩士論文,民國99年。
29.H. Glasbrenner , E. Nold, Z. Voss, “The Influence of Alloying Elements on The Hot-Dip Aluminizing Process and on The Subsequent High-Temperature Oxidation,”Journal of Nuclear Materials, Vol. 249, pp. 39-45 (1997).
30.Y. Y. Chang , C. C. Tsaur, C. R James, “Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidationock,”Surface & Coatings Technology, Vol. 200, pp. 6588-6593 (2006).
31.S. K. Samanta, S. K. Mitra, T. K. Pal, “Influence of Welding Speed on Microstructure and Oxidation Behaviour of Laser Welded Austenitic Stainless Steels,”ISIJ International, Vol. 46, pp. 100-105 (2006).
32.J. L. Jordan, S. C. Deevi, “Vacancy Formation and Effects in FeAl,”Intermetallics, Vol. 11, pp. 507-528, 2003.
33.A. D. Smigelskas, E. O. Kirkendall , Trans. AIME, Vol. 171, pp. 130 (1947).
34.A. Joseph, Sanjai K. Rai, T. Jayakumar, N. Murugan, “Evaluation of Residual Stresses in Dissimilar Weld Joints,” International Journal of Pressure Vessels and Piping, Vol. 82, pp. 700-705 (2005).
35.X. Di, S. Deng, B. Wang, “Effect of Pulse Current on Mechanical Properties and Dendritic Morphology of Modified Medium Manganese Steel Welds Metal,”Materials and Design, Vol. 66, pp. 169-175 (2014).
36.Y. Li, H. Ma, J. Wang, “A study of crack and fracture on the welding joint of Fe3Al and Cr18–Ni8 stainless steel,”Materials Science and Engineering A, Vol. 528, pp. 4343-4347 (2011).
37.W. J. Cheng, C. J. Wang, “Effect of Chromium on The Formation of Intermetallic Phases in Hot-Dipped Aluminide Cr–Mo Steels,” Applied Surface Science, Vol. 277, pp. 139-145 (2013).
38.J. Yan, M. Gao, X. Y. Zeng, “Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by TIG, Laser and Laser -TIG Hybrid Welding,”Optics and Lasers in Engineering, Vol. 48, pp. 512-517 (2010).
39.C. Liua, J. X. Zhang, C. B. Xue, “Numerical Investigation on Residual Stress Distribution and Evolution During Multipass Narrow Gap Welding of Thick-Walled Stainless Steel Pipes,”Fusion Engineering and Design, Vol. 86, pp. 288-295 (2011).
40.C. Liu, C.L. Dong, “Internal Residual Stress Measurement on Linear Friction Welding of Titanium Alloy Plates with Contour Method,”Trans. Nonferrous Met. Soc. China, Vol. 24, pp. 1387-1392 (2014).
41.R. Kumar, V. K. Tewari, S. Prakash, “Oxidation Behavior of Base Metal, Weld Metal and HAZ Regions of SMAW Weldment in ASTM SA210 GrA1 Steel,”Journal of Alloys and Compounds, Vol. 479, pp. 432-435 (2009).
42.Y. Y. You, R. K. Shiue, “The Study of Carbon Migration in Dissimilar Welding of The Modified 9Cr-1Mo steel,”Journal of Materials Science Letters, Vol. 20, pp. 1429-1432 (2001).
43.G. R. Mirshekari, E. Tavakoli, M. Atapour, B. Sadeghian, “Microstructure and Corrosion Behavior of Multipass Gas Tungsten Arc Welded 304L Stainless Steel,”Materials and Design, Vol. 55, pp. 905-911 (2013).
44.H. Naffakha, M. Shamaniana, F. Ashrafizadeh, “Dissimilar Welding of AISI 310 Austenitic Stainless Steel to Nickel-Based Alloy Inconel657,”Journal of Materials Processing Technology, Vol. 209, pp. 3628-3639 (2009).
45.C. M. B. Martins, J. L. Moreira, J. I. Martins,“Corrosion in Water Supply Pipe Stainless Steel 304 and a Supply Line of Helium in Stainless Steel 316,”Engineering Failure Analysis, Vol. 39, pp. 65-71 (2014).
46.S. H. Hwanga, J. H. Songb, Y. S. Kim, “Effects of Carbon Content of Carbon Steel on its Dissolutioninto a Molten Aluminum alloy,”Materials Science and Engineering A, Vol. 390, pp. 437-443 (2005).
47.H. Springer, A. Kostka, E. J. Payton, D. Raabe , A. Kaysser-Pyzalla, G. Eggeler, “On the Formation and Growth of Intermetallic Phases During Interdiffusion Between Low-Carbon Steel and Aluminum Alloys,”Acta Materialia, Vol. 59, pp. 1586-1600 (2011).
48.R. Paventhan, P. R. Lakshminarayanan , V. Balasubramanian, “Fatigue Behaviour of Friction Welded Medium Carbon Steel and Austenitic Stainless Steel Dissimilar Joints,”Acta Materialia, Vol. 59, pp. 1586-1600 (2011).
49.張宏圖,"球墨鑄鐵實施摩擦攪拌銲接之銲道微觀組織與機械性質研究",國立台灣科技大學機械所博士論文,民國103年。
50.M. A. Clevinger, K. M. Kessell, C. G. Messina, H. M. Ondik, Phase Diagrams for Ceramists, The American Ceramic Society, Inc., OH, Fig. 7109 (1989).

無法下載圖示 全文公開日期 2020/02/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE