簡易檢索 / 詳目顯示

研究生: 張琪詠
CHI-YUNG CHANG
論文名稱: 功能性高分子奈米溶液S.T.E.P鑑定技術及組成物間相互作用之研究
A study on characterization of S.T.E.P technology for polymeric nano solution and multifunctional applications
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱士軒
Shih-Hsuan Chiu
李俊毅
Jiunn-Yih Lee
游進陽
none
馬振基
none
白志中
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 155
中文關鍵詞: 分散穩定性高分子奈米溶液多功能性塗膜S.T.E.P技術粒徑分佈分析離心法
外文關鍵詞: Polymeric nanosolution, multifunctional coating, analytical centrifuge
相關次數: 點閱:302下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建立一完整高分子奈米溶液分散穩定性鑑定技術系統與多功能性塗膜之物化性及其應用之分析。由利用高分子溶液經導入奈米粒子形成高分子複合奈米溶液或亦高分子溶液經由發泡技術形成高分子微泡溶液以達到多功能性塗膜之應用,以配方之設計與材料加工參數的相關性取得最佳穩定性奈米溶液配比,並使用奈米分散穩定性鑑定儀LUMiSizer之S.T.E.P原理分析多功能性奈米溶液在其不同組成物濃度下之分散性及穩定性之影響效應和其儲存壽命,與粒子、微泡含量及處理加工時間對溶液分散穩定性之影響,而由穿透率對其相對時間之關係圖,可得知粒子及微泡在多功能性奈米塗料中的物理性質,進而求得粒子及微泡在奈米分散液之粒徑分佈,經由SEM、DLS、Zeta potential結果交叉認證建立其完整系列評估之鑑定技術。並評估多功能奈米塗膜之性能與其應用之成效。本研究大致分為三部分以探討S.T.E.P在多功能性奈米溶液之分析應用,及其功能性之效能。

    本研究第一部分之內容聚焦於藉由奈米分散穩定性鑑定儀LUMiSizer之S.T.E.P原理評估高分子複合奈米溶液之分散穩定性及儲存壽命,進而取得其最佳化配方以利塗膜之應用。實驗中使用UV光硬化樹脂之液相高分子基材製備複合奈米溶液,並導入功能性奈米粒子以達到功能性塗膜之功用,而探討其組成物參數對奈米粒子在於高分子溶液中分散穩定性的影響,其結果經由交叉印證以建立S.T.E.P分析方法之可靠度。由實驗結果得知,分散劑/增黏劑之比例為影響分散穩定性之關鍵,分散劑添加之比例提高其奈米分散液穩定性提升,反之,增黏劑之比例提高其奈米分散液穩定性下降,粒徑分佈結果顯示,平均粒徑愈小其奈米粒子在高分子基材中不易團聚為分散穩定性愈佳,介面電位絕對值愈大,儲存壽命愈長,其實驗結果與DLS、SEM之結果相互印證為建立S.T.E.P之準確性。

    本研究第二部分之內容聚焦於探討水溶性高分子聚氨酯微泡溶液在醫療封裝材之研究及其應用,並利用奈米分散穩定性鑑定儀LUMiSizer之S.T.E.P原理評估其微泡穩定性及建立發泡密度對於微泡穩定性之影響。實驗中以水溶性高分子聚氨酯溶液經由發泡機制製備不同發泡密度之微泡溶液並塗佈於醫療包裝基材為熱封膠之應用,進一步探討其塗膜後之抗沾黏、柔軟度、耐候試驗之特性並其與LLDPE膜熱封後包裝材之剝離強度和透氣度之效能。由實驗結果得知,水溶性高分子聚氨酯微泡溶液之發泡密度愈高其微泡穩定性愈高,微泡分佈愈廣而尺寸愈小。而塗膜後之抗沾黏可達到<1 g/cm2,附著性為5B,抗刮性為HB,高柔軟度,黃化指數小於5之特性,熱封包裝材之剝離強度和透氣度隨著水溶性高分子聚氨酯微泡溶液之發泡密度提高而增加,其結論為實並與SEM之結果交叉驗證。

    本研究第三部分之內容聚焦於製備UV光硬化奈米複合導電膜並利用奈米分散穩定性鑑定儀LUMiSizer之S.T.E.P原理探討其導電奈米粒子在其塗佈溶液之分散穩定性及粒徑分佈。實驗中以原位聚合法製備聚吡咯導電粒子並分散於UV光硬化樹脂之液相高分子基材,再者導入碳黑及碳管奈米粒子以協同作用提高其導電度,進一步探討不同導電奈米粒子複合作用對其分散穩定性、導電度、熱穩定度及耐候穩定性之特性,其實驗結果與DLS、SEM之結果相互印證為建立S.T.E.P對於複合粒子效應之準確性。由實驗結果得知,單一聚吡咯導電溶液為分散穩定性最佳,而三相複合導電溶液因產生團聚為分散穩定性最差,其相符為介面電位測定之結果,而由LUMiSizer測定之粒徑分佈與其DLS、SEM測定之結果相同,因碳黑及碳管粒子的協同作用,使其三相複合導電膜之導電率可達到1×10-3 S/cm,其熱穩定性為最佳,附著性為5B,抗刮性為4H-5H。三相複合導電溶液經超音波處理,其導電率可達至0.45 S/cm,平均粒徑愈小。

    由上述實驗結果得知,奈米分散穩定性鑑定儀LUMiSizer利用其S.T.E.P技術可即時及準確地得知奈米粒子在其多功能性高分子奈米溶液之分散情形,根據如此在塗佈工業應用上,可帶來產品之研究開發及品管之重大貢獻。


    In this study, we aim to establish a complete dispersibility analysis system for polymeric nanosolution, and analyzing of properties and applications for multifunctional coatings as well. The synthesis of multifunctional coatings is by adding nanoparticles into polymeric solution or using foaming technique to obtain polymeric micro-foam solution. The great stable of nanosolution is obtained by optimizing materials selection and processing parameter. The multisample analytical centrifuge (LUMiSizer, L.U.M. GmbH, Berlin Germany) used in this study employs S.T.E.P technology (Space and Time resolved Extiction Profile), which allows to measure the intensity of the transmitted light as function of time and position over the entire sample length simultaneously. While the variation of the light extinction curves after centrifugal segregation provided a qualitative description, a rigorous formulation can provide detailed quantitative characterization. By this method, the dispersibility and shelf life of multifunctional nanosolution and effects of nanoparticles content and processing time on dispersiblity can be characterized easily. It also determines the particle size distribution of multifunctional coatings; the results were comparable with those obtained using dynamic light scattering, scanning electron microscope and zeta potential analysis. This study has addressed three parts respectively to discuss the applications of S.T.E.P technology on analyzing multifunctional nanosolution and evaluating the performances.

    Part (i) describes the dispersibility and particle size distributions of nanocomposite coatings. The LUMiSizerR analytical centrifuge with STEP technology can determine the particle dispersion and size distribution of multisample organic/inorganic composite coatings. The stability of the coatings increases upon increasing the dispersant concentration, and decreases upon increasing the binder concentration. Dispersibility measurements reveals that the coating sample with higher dispersant concentration exhibits the best stabilizing performance without agglomeration, due to its lowest sedimentation rate, determining through shelf-life predictions with the LUMiSizerR and its highest absolute zeta potential. The dispersibility results obtain from the zeta potential and LUMiSizerR data are consistent and precise. Using DLS and SEM to determine PSDs provided results that are similar to those obtained using the LUMiSizerR. The particle sizes decrease with high dispersibility and increase with low dispersibility.

    Part (ii) describes the stability and application in medical packaging of polyurethane foam coatings. The preparation of PUFs with various foam densities are through mechanical foaming and then coated PUFs of different foam densities onto TyvekR medical paper at different thicknesses. The PUF coating with higher foam density has the highest stability. SEM imagings reveal that the cell size of the PUF coats decrease and the cell density of the PUF coats increase upon increasing the foam density respectively. The PUF coat with higher foam density exhibits low tackiness (<1 g/cm2), high adhesion (5B), high scratch resistance (HB), high flexibility (passes), and high durability ( 5).The peel strength increases upon increasing the foam density of the PUF coats and decreases upon increasing the coating thickness of the PUF coats. The SEM images of peeled seal surfaces are consistent with the mechanical properties of heat seals. The air permeability of these medical pouches increases upon increasing the foam density and cell density of the PUF coats.

    Part (iii) describes the in-situ synthesis and stability of conductive nanocomposite coatings by uv-induced polymerization.The UV-cured conductive nanocomposite coatings containing hybrid nanoparticles of PPy, CB and CNT are developed. Poly (pyrrole) is synthesized using chemical oxidation method and well-dispersed into polymer matrix. The stability and particle size distribution of nanocomposite coatings are investigated by LUMiSizerR, and the results were in good agreement with that of DLS and Zeta potential, which PPy coating showed the greatest stability and smallest particle size without agglomerates. The morphology measurements by SEM indicateds the aggregates of particles in the hybrid coatings resulting in the larger particle size and border particle size distribution. In the conductivity, the PPy/CB/CNT hybrid coat had highest conductivity (1×10-3 S/cm). Apart from the improvement in the electrical conductivity, the thermal stability also enhanced with addition of nanoparticles, even the PPy/CB/CNT nanocomposite coats exhibit great durability to the adhesion of the 5B level value, and scratch of 4H-5H value. Moreover, the PPy/CB/CNT nanocomposite through ultrasonication resulted in higher conductivity (0.45 S/cm) and smaller particle size (310 nm).

    From previous experimental results, the LUMiSizerR with S.T.E.P technology via analytical centrifuge allows the characterization of dispersed particles to better understand the underlying dispersiblity mechanisms. The approach can also provide objective direct assessments and quantified analyses of separation phenomena in coating systems for R&D and product control.

    TABLE OF CONTENTS ABSTRACT (CHINESE)I ABSTRACTIII ACKNOWLEDGMENTV LIST OF FIGURESX LIST OF TABLESXIV CHAPTER 1 INTRODUCTION1 1.1 Motivation2 1.2 Research Objectives4 1.3 Structure of The Dissertation4 1.4 References5 CHAPTER 2 RESEARCH BACKGROUND6 2.1 Nanotechnology7 2.2 Polymer Nanocomposites8 2.3 Production of Nanoparticles and Nano-sized Composite Particles9 2.3.1 Solid phase method10 2.3.2 Gas phase method13 2.3.3 Liquid phase method13 2.4 Multifunctional Polymer Nanosolution13 2.5 Materials in Polymer Nanosolution15 2.5.1 Waterborne polymer based nanosolution15 2.5.2 UV curing polymers based nanosolution16 2.5.3 Polymer dispersant17 2.5.4 Polymer binder19 2.5.4 Photoinitiators20 2.6 Multifunctional Fillers21 2.6.1 Carbon blacks21 2.6.2 Carbon nanotubes23 2.6.3 Intrinsically conducting polymers24 2.7 Dispersant Methods for Nanosolution26 2.7.1 Physical processing27 2.7.1.1 Melt compounding27 2.7.1.2 Ultrasonication27 2.7.1.3 Milling and grinding27 2.7.2 Chemical method28 2.7.2.1 In-situ polymerization28 2.8 Characterization of Nanosolution29 2.8.1 Analytical centrifugation30 2.8.2 Progress in analytical centrifugation31 2.8.3 The S.T.E.P technology via analytical centrifugation32 2.8.4 Description of nanoparticles behavior in dispersions under centrifugation36 2.8.5 Particle size distribution by S.T.E.P technology38 2.9 References41 CHAPTER 3 CHARACTERIZING THE DISPERSIBILITY AND PARTICLE SIZE DISTRIBUTIONS OF NANOCOMPOSITE COATINGS50 Abstract51 3.1 Introduction52 3.2 Experimental Methods and Materials54 3.2.1 Materials54 3.2.2 Organic/inorganic composite coating54 3.2.3 Measurement methods55 3.3 Theoretical Background of Analytical Centrifuge58 3.4 Results and Discussion60 3.4.1 Dispersibility of organic/inorganic composite coatings60 3.4.2 Stabilization of coatings with binders62 3.4.3 Stabilization of coatings with dispersants63 3.4.4 Zeta potentials of organic/inorganic composite coatings64 3.4.5 Shelf life of organic/inorganic composite coatings65 3.4.6 Particle size distribution66 3.5 Conclusion72 3.6 References73 CHAPTER 4 CHARACTERIZING THE STABILITY AND APPLICATION IN MEDICAL PACKAGING OF POLYURETHANE FOAM COATING76 Abstract77 4.1 Introduction78 4.2 Experimental80 4.2.1 Materials80 4.2.2 Methods80 4.2.2.1 Preparation of PUF coating solutions80 4.2.2.2 Preparation of PUF coats81 4.2.2.3 Melting point distribution of LLDPE81 4.2.2.4 Heat sealing of PUF/LLDPE films82 4.3 Characterization83 4.3.1 Stability measurements83 4.3.2 Morphological observation84 4.3.3 EtO sterilization84 4.3.4 Tack properties84 4.3.5 Adhesion84 4.3.6 Scratch resistance85 4.3.7 Flexibility85 4.3.8 Durability85 4.3.9 Peel strength85 4.3.10 Air permeability86 4.4 Results and Discussion87 4.4.1 Stability measurements of PUF coatings87 4.4.2 Surface morphology of PUF coats89 4.4.3 Tack properties of PUF coats91 4.4.4 Adhesions of PUF coats91 4.4.5 Scratch resistance of PUF coats93 4.4.6 Flexibility of PUF coats93 4.4.7 Durability of PUF coats94 4.4.8 Peel strength of pouch packaging95 4.4.9 Air permeability of pouch packaging98 4.5 Conclusion100 4.6 References101 CHAPTER 5 IN-SITU SYNTHESIS AND STABILITY OF CONDUCTIVE NANOCOMPOSITE COATINGS BY UV-INDUCED POLYMERIZATION104 Abstract105 5.1 Introduction106 5.2 Experimental109 5.2.1 Materials109 5.2.2 Methods109 5.2.2.1 In-situ polymerization of polypyrrole109 5.2.2.2 Preparation of UV-curable nanocomposite coatings110 5.2.2.3 Preparation of UV-curable hybrid nanocomposite coatings via in-situ polymerization110 5.2.2.4 Fabrication of UV-cured nanocomposite coats111 5.3 Characterization111 5.3.1 Stability measurement111 5.3.2 Morphology observation112 5.3.3 Particle size distribution analysis113 5.3.4 Thermal stability measurements113 5.3.5 Durability investigation113 5.3.6 Electrical conductivity measurement113 5.3.7 Ultrasonication treatment effects114 5.4 Results and Discussion114 5.4.1 Stability measurements of UV-curable nanocomposite coatings114 5.4.2 Surface morphology of UV-cured nanocomposite coats117 5.4.3 Particle size distribution118 5.4.4 Thermal stability of UV-cured nanocomposite coats120 5.4.5 Durability of UV-cured nanocomposite coats121 5.4.6 Electrical conductivity of UV-cured nanocomposite coats124 5.4.7 Ultrasonication treatment effects on nanocomposite coatings126 5.5 Conclusion128 5.6 References129 CHAPTER 6 CONCLUSIONS133 CONCLUSIONS134 AUTHOR BIOGRAPHY136

    1.Buzea C, Pacheco I, and Robbie K. Biointerphases 2007;2(4):MR17-MR71.
    2.Mark JE. Polymer Engineering & Science 1996;36(24):2905-2920.
    3.Novak BM. Advanced Materials 1993;5(6):422-433.
    4.Chujo Y. Current Opinion in Solid State and Materials Science 1996;1(6):806-811.
    5.Wen J and Wilkes GL. Chemistry of Materials 1996;8(8):1667-1681.
    6.Schmidt H. Journal of Non-Crystalline Solids 1985;73(1–3):681-691.
    7.Brinker CJ. Journal of Non-Crystalline Solids 1988;100(1–3):31-50.
    8.Mark JE, Jiang CY, and Tang MY. Macromolecules 1984;17(12):2613-2616.
    9.Brinker CJ and Scherer GW. Journal of Non-Crystalline Solids 1985;70(3):301-322.
    10.Landry CJT, Coltrain BK, Wesson JA, Zumbulyadis N, and Lippert JL. Polymer 1992;33(7):1496-1506.
    11.Matĕjka L. Epoxy-silica/silsesquioxane Polymer Nanocomposites Hybrid Nanocomposites for Nanotechnology. In: Merhari L, editor.: Springer US, 2009. pp. 1-84.
    12.Huang HH, Orler B, and Wilkes GL. Macromolecules 1987;20(6):1322-1330.
    13.Kohjiya S, Ochiai K, and Yamashita S. Journal of Non-Crystalline Solids 1990;119(2):132-135.
    14.Girard-Reydet E, Lam TM, and Pascault JP. Macromolecular Chemistry and Physics 1994;195(1):149-158.
    15.Bokobza L and Chauvin J-P. Polymer 2005;46(12):4144-4151.
    16.Antonietti M and Goltner C. Angewandte Chemie International Edition in English 1997;36(9):910-928.
    17.Chapter 2 Preparation of polymer-based nanomaterials. In: Capek I, editor. Studies in Interface Science, vol. Volume 23: Elsevier, 2006. pp. 71-135.
    18.Preface. In: Capek I, editor. Studies in Interface Science, vol. Volume 23: Elsevier, 2006. pp. vii-x.
    19.Chiu H-T, Chiang T-Y, Huang Y-C, Chang C-Y, and Kuo M-T. Polymer-Plastics Technology and Engineering 2010;49(15):1552-1562.
    20.Yokoyama T, Yokoyama S, Kamikado T, Okuno Y, and Mashiko S. Nature 2001;413(6856):619-621.
    21.Yokoyama T, Tamura K, Usui H, and Jimbo G. International Journal of Mineral Processing 1996;44–45(0):413-424.
    22.Yokoyama T, Jimbo G, Nishimura T, and Sakai S. Powder Technology 1992;70(2):153-161.
    23.Inkyo M, Tahara T, Iwaki T, Iskandar F, Hogan Jr CJ, and Okuyama K. Journal of Colloid and Interface Science 2006;304(2):535-540.
    24.Kenji M, Yoshiaki K, Hirofumi T, Toshiyuki N, Tomoaki H, and Yoichi K. International Journal of Pharmaceutics 1994;105(1):11-18.
    25.Kawashima Y, Lin SY, Ogawa M, Handa T, and Takenaka H. Journal of Pharmaceutical Sciences 1985;74(11):1152-1156.
    26.Kawashima Y, Cui F, Takeuchi H, Niwa T, Hino T, and Kiuchi K. International Journal of Pharmaceutics 1995;119(2):139-147.
    27.Voevodin AA, Zabinski JS, and Muratore C. Tsinghua Science and Technology 2005;10(6):665-679.
    28.Veprek S, Niederhofer A, Moto K, Bolom T, Mannling HD, Nesladek P, Dollinger G, and Bergmaier A. Surface and Coatings Technology 2000;133–134(0):152-159.
    29.Pilloud D, Pierson JF, and Pichon L. Materials Science and Engineering: B 2006;131(1–3):36-39.
    30.Voevodin AA and Zabinski JS. Diamond and Related Materials 1998;7(2–5):463-467.
    31.Park I-W, Choi SR, Suh JH, Park C-G, and Kim KH. Thin Solid Films 2004;447–448(0):443-448.
    32.Holleck H and Schulz H. Surface and Coatings Technology 1988;36(3–4):707-714.
    33.Koehler JS. Physical Review B 1970;2(2):547-551.
    34.Kelly PJ, Hall R, O'Brien J, Bradley JW, Henderson P, Roche G, and Arnell RD. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2001;19(6):2856-2865.
    35.McNally T, Raymond Murphy W, Lew CY, Turner RJ, and Brennan GP. Polymer 2003;44(9):2761-2772.
    36.Zhu J, Uhl FM, Morgan AB, and Wilkie CA. Chemistry of Materials 2001;13(12):4649-4654.
    37.Yang H and Jiang P. Langmuir 2010;26(16):13173-13182.
    38.Yang H and Jiang P. Langmuir 2010;26(15):12598-12604.
    39.Nguyen T-P. Surface and Coatings Technology 2011;206(4):742-752.
    40.Lira-Cantu* M and Gomez-Romero P. Next-Generation Hybrid Nanocomposite Materials Based on Conducting Organic Polymers: Energy Storage and Conversion Devices Hybrid Nanocomposites for Nanotechnology. In: Merhari L, editor.: Springer US, 2009. pp. 289-319.
    41.Maenosono S, Okubo T, and Yamaguchi Y. Journal of Nanoparticle Research 2003;5(1):5-15.
    42.Noble K-L. Progress in Organic Coatings 1997;32(1–4):131-136.
    43.Wiersma AE, vd Steeg LMA, and Jongeling TJM. Synthetic Metals 1995;71(1–3):2269-2270.
    44.Nakayama Y. Progress in Organic Coatings 1998;33(2):108-116.
    45.Kim BK, Seo JW, and Jeong HM. European Polymer Journal 2003;39(1):85-91.
    46.Gooch JW, Dong H, and Schork FJ. Journal of Applied Polymer Science 2000;76(1):105-114.
    47.Thunemann AF, Lieske A, and Paulke B-R. Advanced Materials 1999;11(4):321-324.
    48.Puskas JE, Kaszas G, Chen CC, and Kennedy JP. Polymer Bulletin 1988;20(3):253-260.
    49.Weiss P. Journal of Polymer Science: Polymer Letters Edition 1983;21(4):310-310.
    50.Christian D. Chapter 5 UV-Radiation curing of adhesives. In: Philippe C, editor. Handbook of Adhesives and Sealants, vol. Volume 2: Elsevier Science Ltd, 2006. pp. 303-353.
    51.Warson H. Polymer International 1991;25(1):64-64.
    52.Bortolus P and Gleria M. Journal of Inorganic and Organometallic Polymers 1994;4(3):205-236.
    53.Hoyle CE, Clark SC, Jonsson S, and Shimose M. Polymer 1997;38(22):5695-5697.
    54.Davidson RS. Journal of Chemical Technology & Biotechnology 1994;59(1):115-116.
    55.Allen NS, Marin MC, Edge M, Davies DW, Garrett J, Jones F, Navaratnam S, and Parsons BJ. Journal of Photochemistry and Photobiology A: Chemistry 1999;126(1–3):135-149.
    56.Wu Y and Zhang N. Journal of Polymer Research 2009;16(6):647-653.
    57.St. Pierre LE. Journal of Polymer Science Part B: Polymer Letters 1972;10(7):573-574.
    58.Dunn AS. British Polymer Journal 1986;18(4):278-278.
    59.Wicks ZW. Coatings. Encyclopedia of Polymer Science and Technology: John Wiley & Sons, Inc., 2002.
    60.Hesselink FT, Vrij A, and Overbeek JTG. The Journal of Physical Chemistry 1971;75(14):2094-2103.
    61.Cairns RJR, Van Megen W, and Ottewill RH. Journal of Colloid and Interface Science 1981;79(2):511-517.
    62.Cainrs RJR, Ottewill RH, Osmond DWJ, and Wagstraff I. Journal of Colloid and Interface Science 1976;54(1):45-51.
    63.Barclay LM, Harrington AH, and Ottewill RH. Colloid & Polymer Science 1972;250(7):655-666.
    64.Antl L, Goodwin JW, Hill RD, Ottewill RH, Owens SM, Papworth S, and Waters JA. Colloids and Surfaces 1986;17(1):67-78.
    65.Biggs S. Berichte der Bunsengesellschaft fur physikalische Chemie 1994;98(4):636-637.
    66.Yuh H-J and Pai DM. Philosophical Magazine Letters 1990;62(1):61-66.
    67.Paul S. Surface coatings. Science and technology, 1985.
    68.Doane JW, Golemme A, West JL, Whitehead JB, and Wu BG. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 1988;165(1):511-532.
    69.Weiss KD. Progress in Polymer Science 1997;22(2):203-245.
    70.Bower JK, Kolb JR, and Pruneda CO. Industrial & Engineering Chemistry Product Research and Development 1980;19(3):326-329.
    71.Krycer I, Pope DG, and Hersey JA. Powder Technology 1983;34(1):39-51.
    72.Liu G, Zheng H, Kim S, Deng Y, Minor AM, Song X, and Battaglia VS. Journal of The Electrochemical Society 2008;155(12):A887-A892.
    73.Crivello JV. Journal of Polymer Science Part A: Polymer Chemistry 1999;37(23):4241-4254.
    74.Crivello J. Cationic polymerization — Iodonium and sulfonium salt photoinitiators Initiators — Poly-Reactions — Optical Activity. vol. 62: Springer Berlin / Heidelberg, 1984. pp. 1-48.
    75.Crivello JV and Lee JL. Journal of Polymer Science Part A: Polymer Chemistry 1989;27(12):3951-3968.
    76.Monroe BM and Weed GC. Chemical Reviews 1993;93(1):435-448.
    77.Allen NS. Journal of Photochemistry and Photobiology A: Chemistry 1996;100(1–3):101-107.
    78.Rutsch W, Dietliker K, Leppard D, Kohler M, Misev L, Kolczak U, and Rist G. Progress in Organic Coatings 1996;27(1–4):227-239.
    79.Polymers in Electronics: American Chemical Society, 1984.
    80.Davidson RS. Journal of Photochemistry and Photobiology A: Chemistry 1993;73(2):81-96.
    81.Weit SK, Kutal C, and Allen RD. Chemistry of Materials 1992;4(2):453-457.
    82.Guthrie J, Jeganathan MB, Otterburn MS, and Woods J. Polymer Bulletin 1986;15(1):51-58.
    83.Donnet J-B and Wang TK. Macromolecular Symposia 1996;108(1):97-109.
    84.Sumita M, Sakata K, Asai S, Miyasaka K, and Nakagawa H. Polymer Bulletin 1991;25(2):265-271.
    85.Biscoe J and Warren BE. Journal of Applied Physics 1942;13(6):364-371.
    86.Huang J-C. Advances in Polymer Technology 2002;21(4):299-313.
    87.Rwei SP, Manas-Zloczower I, and Feke DL. Polymer Engineering & Science 1990;30(12):701-706.
    88.Donnet JB. Carbon 1982;20(4):267-282.
    89.Jawhari T, Roid A, and Casado J. Carbon 1995;33(11):1561-1565.
    90.Tiarks F, Landfester K, and Antonietti M. Macromolecular Chemistry and Physics 2001;202(1):51-60.
    91.Goldberg ED. Black carbon in the environment: properties and distribution, 1985.
    92.Ahmed S and Jones FR. Journal of Materials Science 1990;25(12):4933-4942.
    93.Wang J. Electroanalysis 2005;17(1):7-14.
    94.Coleman JN, Khan U, Blau WJ, and Gun’ko YK. Carbon 2006;44(9):1624-1652.
    95.Breuer O and Sundararaj U. Polymer Composites 2004;25(6):630-645.
    96.Bokobza L. Polymer 2007;48(17):4907-4920.
    97.Thostenson ET, Ren Z, and Chou T-W. Composites Science and Technology 2001;61(13):1899-1912.
    98.Martel R, Schmidt T, Shea HR, Hertel T, and Avouris P. Applied Physics Letters 1998;73(17):2447-2449.
    99.Jacobs CB, Peairs MJ, and Venton BJ. Analytica Chimica Acta 2010;662(2):105-127.
    100.See CH and Harris AT. Industrial & Engineering Chemistry Research 2007;46(4):997-1012.
    101.Gong X, Liu J, Baskaran S, Voise RD, and Young JS. Chemistry of Materials 2000;12(4):1049-1052.
    102.Gooding JJ. Electrochimica Acta 2005;50(15):3049-3060.
    103.Li J, Lu Y, Ye Q, Cinke M, Han J, and Meyyappan M. Nano Letters 2003;3(7):929-933.
    104.Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, and Walker GC. Journal of the American Chemical Society 2002;124(31):9034-9035.
    105.Wynne KJ and Street GB. Industrial & Engineering Chemistry Product Research and Development 1982;21(1):23-28.
    106.Gerard M, Chaubey A, and Malhotra BD. Biosensors and Bioelectronics 2002;17(5):345-359.
    107.Wang Y and Jing X. Polymers for Advanced Technologies 2005;16(4):344-351.
    108.Stenger-Smith JD. Progress in Polymer Science 1998;23(1):57-79.
    109.Inzelt G, Pineri M, Schultze JW, and Vorotyntsev MA. Electrochimica Acta 2000;45(15–16):2403-2421.
    110.Tallman D, Spinks G, Dominis A, and Wallace G. Journal of Solid State Electrochemistry 2002;6(2):73-84.
    111.Svirskis D, Travas-Sejdic J, Rodgers A, and Garg S. Journal of Controlled Release 2010;146(1):6-15.
    112.Roth S and Graupner W. Synthetic Metals 1993;57(1):3623-3631.
    113.Moliton A and Hiorns RC. Polymer International 2004;53(10):1397-1412.
    114.Heinze J. Electronically conducting polymers Electrochemistry IV. In: Steckhan E, editor., vol. 152: Springer Berlin / Heidelberg, 1990. pp. 1-47.
    115.Bidan G. Sensors and Actuators B: Chemical 1992;6(1–3):45-56.
    116.Bakhshi A. Bulletin of Materials Science 1995;18(5):469-495.
    117.Bloor D and Movaghar B. Solid-State and Electron Devices, IEE Proceedings I 1983;130(5):225-232.
    118.Chapter 3 Preparation of colloidal metal particles. In: Capek I, editor. Studies in Interface Science, vol. Volume 23: Elsevier, 2006. pp. 137-223.
    119.Raymond HF. Nanocomposite and Nanostructured Coatings: Recent Advancements. Nanotechnology Applications in Coatings, vol. 1008: American Chemical Society, 2009. pp. 2-21.
    120.Chen H, Jacobs O, Wu W, Rudiger G, and Schadel B. Polymer Testing 2007;26(3):351-360.
    121.Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, and Cavaille. Biomacromolecules 2005;6(5):2732-2739.
    122.Xie X-L, Mai Y-W, and Zhou X-P. Materials Science and Engineering: R: Reports 2005;49(4):89-112.
    123.Prolongo SG, Buron M, Gude MR, Chaos-Moran R, Campo M, and Urena A. Composites Science and Technology 2008;68(13):2722-2730.
    124.Broza G. Composites Science and Technology 2010;70(6):1006-1010.
    125.Cho JW and Paul DR. Polymer 2001;42(3):1083-1094.
    126.Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, and Paul DR. Polymer 2001;42(23):9513-9522.
    127.Hunley MT, Potschke P, and Long TE. Macromolecular Rapid Communications 2009;30(24):2102-2106.
    128.Potschke P, Abdel-Goad* M, Pegel S, Jehnichen D, Mark JE, Zhou** D, and Heinrich G. Journal of Macromolecular Science, Part A 2009;47(1):12-19.
    129.Nguyen VS, Rouxel D, Hadji R, Vincent B, and Fort Y. Ultrasonics Sonochemistry 2011;18(1):382-388.
    130.Jorge E, Chartier T, and Boch P. Journal of the American Ceramic Society 1990;73(8):2552-2554.
    131.Higashitani K, Yoshida K, Tanise N, and Murata H. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1993;81(0):167-175.
    132.Sato K, Li J-G, Kamiya H, and Ishigaki T. Journal of the American Ceramic Society 2008;91(8):2481-2487.
    133.Disma F, Aymard L, Dupont L, and Tarascon JM. Journal of The Electrochemical Society 1996;143(12):3959-3972.
    134.Houivet D, El Fallah J, and Haussonne J-M. Journal of the American Ceramic Society 2002;85(2):321-328.
    135.Stehr N. International Journal of Mineral Processing 1988;22(1–4):431-444.
    136.Ying K-L and Hsieh T-E. Journal of Applied Polymer Science 2007;106(3):1550-1556.
    137.Velamakanni BV and Fuerstenau DW. Powder Technology 1993;75(1):11-19.
    138.Zhao L, Zwick J, and Lugscheider E. Surface and Coatings Technology 2003;168(2–3):179-185.
    139.Valkevich VL, Belyakov AV, and Safronova TA. Glass and Ceramics 1985;42(5):235-238.
    140.Ma P-C, Siddiqui NA, Marom G, and Kim J-K. Composites Part A: Applied Science and Manufacturing 2010;41(10):1345-1367.
    141.Luo K, Zhou S, Wu L, and Gu G. Langmuir 2008;24(20):11497-11505.
    142.Park C, Ounaies Z, Watson KA, Crooks RE, Smith Jr J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, and Clair TLS. Chemical Physics Letters 2002;364(3–4):303-308.
    143.Yeh J-M, Liou S-J, Lai M-C, Chang Y-W, Huang C-Y, Chen C-P, Jaw J-H, Tsai T-Y, and Yu Y-H. Journal of Applied Polymer Science 2004;94(5):1936-1946.
    144.Burgentzle D, Duchet J, Gerard JF, Jupin A, and Fillon B. Journal of Colloid and Interface Science 2004;278(1):26-39.
    145.Percy MJ, Michailidou V, Armes SP, Perruchot C, Watts JF, and Greaves SJ. Langmuir 2003;19(6):2072-2079.
    146.Front Matter and Index. Characterization of Nanophase Materials: Wiley-VCH Verlag GmbH, 2001. pp. i-xvii.
    147.Hansen HN, Carneiro K, Haitjema H, and De Chiffre L. CIRP Annals - Manufacturing Technology 2006;55(2):721-743.
    148.Porfyrakis K and Warner JH. Carbon Nanomaterials: Synthesis, Properties and Applications Nanostructured Materials and Their Applications. In: Logothetidis S, editor.: Springer Berlin Heidelberg, 2012. pp. 23-46.
    149.Buscall R. Colloids and Surfaces 1982;5(4):269-283.
    150.Gilanyi T, Horvath-Szabo G, and Wolfram E. Colloids and Surfaces 1986;18(2–4):283-291.
    151.Tombacz E, Deer I, and Dekany I. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1993;71(3):269-276.
    152.Tombacz E, Horvath B, and Abraham I. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1993;71(3):277-285.
    153.Tcholakova S, Denkov ND, Ivanov IB, and Campbell B. Langmuir 2002;18(23):8960-8971.
    154.Svedberg T and Nichols JB. Journal of the American Chemical Society 1923;45(12):2910-2917.
    155.Svedberg T and Rinde H. Journal of the American Chemical Society 1924;46(12):2677-2693.
    156.Svedberg T. Industrial & Engineering Chemistry Analytical Edition 1938;10(3):113-127.
    157.Colfen H and Pauck T. Colloid & Polymer Science 1997;275(2):175-180.
    158.Laue TM. Analytical Ultracentrifugation. Current Protocols in Protein Science: John Wiley & Sons, Inc., 2001.
    159.Machtle W. Die Angewandte Makromolekulare Chemie 1988;162(1):35-52.
    160.Mittal V. Colloid & Polymer Science 2010;288(1):25-35.
    161.Mittal V. Colloid & Polymer Science 2010;288(6):621-630.
    162.Mittal V and Lechner MD. Journal of Colloid and Interface Science 2010;346(2):378-383.
    163.Colfen H. Analytical and Bioanalytical Chemistry 2006;385(5):795-796.
    164.Clementi LA, Vega JR, and Gugliotta LM. Particle & Particle Systems Characterization 2010;27(5-6):146-157.
    165.Popel AS. Fluid Dynamics 1969;4(4):14-18.
    166.Fromer D and Lerche D. Archive of Applied Mechanics 2002;72(2):85-95.
    167.Di Felice R. International Journal of Multiphase Flow 1994;20(1):153-159.
    168.Anestis G and Schneider W. Archive of Applied Mechanics 1983;53(6):399-407.
    169.Kynch GJ. Transactions of the Faraday Society 1952;48:166-176.
    170.Burger R. Chemical Engineering Journal 2000;80(1–3):177-188.
    171.Morariu VV, Simplaceanu T, Ionica M, and Frangopol PT. Journal of Biological Physics 1986;14(3):73-76.
    172.Lerche D and Fromer D. Biorheology 2001;38(2):249-262.
    173.Burger R and Concha F. International Journal of Mineral Processing 2001;63(3):115-145.
    174.Sobisch T and Lerche D. Colloid & Polymer Science 2000;278(4):369-374.
    175.Lerche D. Journal of Dispersion Science and Technology 2002;23(5):699-709.
    176.Buscall R and Ettelaie R. Industrial and Engineering Chemistry Research 2006;45(21):6915-6922.
    177.Lewis JA. Journal of the American Ceramic Society 2000;83(10):2341-2359.
    178.Sobisch T and Lerche D. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008;331(1–2):114-118.
    179.Gilanyi T. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1995;104(1):119-126.
    180.Lerche D and Sobisch T. Powder Technology 2007;174(1–2):46-49.
    181.Mittal V and Lechner MD. Journal of Colloid and Interface Science 2011;355(2):423-430.
    182.Harding S. Analysis of Polysaccharides by Ultracentrifugation. Size, Conformation and Interactions in Solution Polysaccharides I. In: Heinze T, editor., vol. 186: Springer Berlin / Heidelberg, 2005. pp. 211-254.
    183.Groves MJ and Freshwater DC. Journal of Pharmaceutical Sciences 1968;57(8):1273-1291.
    184.Nichols JB, Kraemer EO, and Bailey ED. The Journal of Physical Chemistry 1931;36(1):326-339.
    185.Nichols JB, Kraemer EO, and Bailey ED. The Journal of Physical Chemistry 1931;36(2):505-514.
    186.Quarterly Journal of the Royal Meteorological Society 1958;84(360):198-199.
    187.Chu F, Graillat C, Guillot J, and Guyot A. Colloid & Polymer Science 1997;275(10):986-991.
    188.Mahl D, Diendorf J, Meyer-Zaika W, and Epple M. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011;377(1–3):386-392.
    189.Rapoport DH, Vogel W, Colfen H, and Schlogl R. The Journal of Physical Chemistry B 1997;101(21):4175-4183.
    190.Koenderink GH and Philipse AP. Journal De Physique. IV : JP 2000;10(7):Pr7-295-Pr297-298.

    QR CODE