簡易檢索 / 詳目顯示

研究生: 邱唯家
Wei-Chia Chiu
論文名稱: 多邊形塗層孔洞承受點熱源之熱應力分析
Thermal Stress Analysis of a Coated Arbitrary Shape Hole Subject to a Point Heat Source
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 陳明志
Ming-Jyh CHERN
陳富謀
FU-MOU CHEN
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 120
中文關鍵詞: 點熱源多邊形塗層孔洞保角映射法
外文關鍵詞: Coated Arbitrary Shape Hole
相關次數: 點閱:265下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在熱彈性線性理論的框架下,本文主要在求解塗層多邊形孔洞受到單一點熱源之熱彈性解析,並計算孔洞邊界正向應力與切向應力。先利用保角映射法將塗層孔洞轉換成同心圓孔洞,意旨由物理平面轉換至數學平面,再藉由解析連續以及交替法等方法計算出所需函數。為了計算塗層孔洞邊界之應力,須先利用邊界上的溫度連續以及熱流連續之條件,取得整體溫度場分布,再使用交替法反覆疊代求得整體溫度場,即可求得溫度勢能函數。再將溫度是能函數做積分運算,並應用在計算介面應力上。研究中根據Muskhelishvili等向性二維彈性力學基本公式,藉由邊界上的應力連續以及位移連續之條件,利用交替法計算求得應力場。得到應力函數後,藉由應力公式計算邊界上正向應力以及切向應力,探討改變材料參數對於應力之影響以及了解塗層之特性。


This paper presents an effective method for interfacial stresses induced by a point heat source in an isotropic plate with a reinforced arbitrary shape hole. Based on the technique of conformal mapping and the method of analytical continuation in conjunction with alternating technique, the general expressions of the temperature and stresses in the reinforcement layer and the matrix are derived explicitly in a series form. Numerical results are presented graphically to investigate the effects of the material combination and geometric configuration on the interfacial normal stress and shear stress. It is interesting to see that the nature of intense fluctuation of the interfacial stresses occurs near the corner of a coated hole due to geometric discontinuities around the corner. The solution provided in this work can be treated as a Green’s function that can be used to solve the corresponding problem with a crack embedded in an infinite matrix.

中文摘要 I ABSTRACT II 致謝 III List of figures VI List of tables XII Explanation of Symbols XIII Chapter 1 Introduction 1 1.1 Research motivation 1 1.2 Literature review 1 1.3 Research method 1 Chapter 2 Problem formulation 5 2.1 Two-dimensional isotropic thermoelasticity theory 5 2.2 Temperature potential energy function 5 2.3 Auxiliary stress function 6 2.4 Mapping function 6 2.5 Analytic functions 7 2.6 Analytic continuation theorem 7 2.7 Stress calculation formula 8 Chapter 3 Temperature field solution 13 3.1 Problem Description 13 3.2 Derivation of temperature field 13 Chapter 4 Stress field solution 19 4.1 Problem Description 19 4.2 Derivation of temperature field 19 4.3 Numerical solution 36 Chapter 5. Finite Element Method 37 5.1 Modeling 37 5.2 Material parameters and grid 37 5.3 Boundary conditions 37 5.4 Post processing 38 Chapter 6 Result & Discussion 43 6.1 Result of temperature field 43 6.1.1 Analytical solution of temperature field 43 6.1.2 Verification of temperature field by finite element analysis 44 6.2 Result of interfacial stresses 44 6.2.1 Verification result of interfacial stresses 45 6.2.2 Analytical solution of interfacial stresses 45 6.3 Convergence analysis 47 6.4 Discussion of the result 48 6.4.1 Discussion of temperature field 48 6.4.2 Discussion of stress field 48 Chapter 7 Conclusion and Future prospects 90 7.1 Conclusion 90 7.2 Future prospects 91 References 92 Appendix A 94 Appendix B 100 Appendix C 105

[1] Muskhelishvili, N, I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 1953.
[2] Florence A.L. and Goodier J.N., Thermal stresses due to disturbance of uniform heat flow by an insulated ovaloid hole, Journal of Applied Mechanics vol.27, pp.635-639, 1960.
[3] England A.H., Complex Variable Methods in Elasticity,Wiley Interscience,London, 1971.
[4] Iyengar, S.R., Alwar, R.S., Stress in a layered half-plane. Journal of the Engineering Mechanics Division, vol.90, pp.79–96, 1964
[5] Chen, W.T., Computation of stresses and displacements in a layered elastic medium. International Journal of Engineering Science. Vol.9, pp.775–800, 1971.
[6] Bufler, H. Theory of elasticity of a multilayered medium. Journal of Elasticity, vol.1, pp.125–143, 1971.
[7] Vlasov, V.Z., Leontev, N.N. Beam, plates and shells on elastic foundations. National Aeronautics and Space Administration, 1966.
[8] Small, J.C., Booker, J.R. Finite layer analysis of layered elastic materials using a flexibility approach. International Journal for Numerical Methods in Engineering, vol.20, pp.1025–1077, 1984.
[9] Lin, W., Keer, L.M. Analysis of a vertical crack in a multi-layered medium. ASME Journal of Applied Mechanics, vol.56, pp63–69, 1989.
[10] Chen W.T., Plane thermal stress at an insulated hole under uniform heat flow in an orthotropic medium, ASME Journal of Applied Mechanics, vol. 34, pp. 133-136, 1967.
[11] Green A.E. and Zerna W., Theoretical Elasticity, Oxford University Press, London, 1954.
[12] Tarn J.Q. and Wang Y.M., Thermal stresses in anisotropic bodies with a hole or a rigid inclusion, Journal of Thermal Stresses, vol. 16, pp. 455-471, 1993.
[13] Lekhnitskii S.G., Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco, 1963.
[14] Brown E. J. and Erdogan F. Thermal stresses in bonded materials containing cuts on the interface. International Journal of Engineering Science, vol. 6, pp.517-529, 1968.
[15] Padovan, J. Thermoelasticity of an anisotropic generally laminated slabs subject to spatially periodic thermal loads. ASME Journal of Applied Mechanics, vol.42, pp.341–346, 1975.
[16] Padovan, J. Thermoelasticity of an anisotropic generally laminated cylinders. ASME Journal of Applied Mechanics, vol.43, pp.124–130, 1976.
[17] Taucher, T.R., Ak€oz, A.Y. Stationary temperature and stress field in an anisotropic elastic slab. ASME Journal of Applied Mechanics, vol.42, pp.647–650, 1975.
[18] Choi, H.J., Thangjitham, S. Stress analysis of multilayered anisotropic elastic media. ASME Journal of Applied Mechanics, vol.58, pp.382–387, 1991a.
[19] Choi, H.J., Thangjitham, S. Stress analysis of multilayered anisotropic elastic media. ASME Journal of Applied Mechanics, vol.58, pp.382–387, 1991b.
[20] Norio Hasebe, Tamai K., and Nakamura T., Analysis of kinked crack under uniform heat flow, ASCE Journal of Engineering Mechanics, vol.112, pp.31-42, 1986.
[21] Norio Hasebe, Akinori Tomida and Takuji Nakamura, Thermal Stresses of a Cracked Circular Hole due to Uniform Heat Flux, Journal of Thermal Stresses, vol.11, pp. 381-391, 1988.
[22] Lekakis I., Kattis M. A., Providas E., Kalamkarov A. L., The disturbance of heat flow and thermal stresses in composites with partially bonded inclusions, Composites Part B: Engineering, vol. 31, pp.21-27, 2000.
[23] Chao C.K., Chen C.K. and Chen F.M., Analytical exact solutions of heat conduction problems for a three-phase elliptical composite, CMES, vol. 47, pp. 283-298, 2009.
[24] Chen F.M. and Chao C.K., Stress analysis of an infinite plate with a coated elliptic hole under a remote uniform heat flow, Journal of Thermal Stresses, vol.31, pp. 599-613, 2008.
[25] Chao C.K., Lu L.M., Chen C.K. and Chen F.M., Analytical solution for a reinforcement layer bonded to an elliptic hole under a remote uniform load, International Journal of Solids and Structures; vol. 46, pp. 2959-2965, 2009.
[26] Chao C.K., Chen C.K. and Chen F.M., Interfacial stresses induced by a point heat source in an isotropic plate with a reinforced elliptical hole, CMES, vol.63, pp. 1-28,2010.
[27] Chang Y.C., Thermolelasticity analysis of an infinite plate with a coated triangular hole under a remote uniform heat flow, Master’s Thesis, NTUST, 2018.
[28] Shen C.H., Stress Analysis of a Coated Triangle Hole a Remote Uniform Load, Master’s Thesis, NTUST, 2018.
[29] Chang C.T., Stress Analysis of a Coated Triangle Hole Subject to a Point Heat Source, Master’s Thesis, NTUST, 2019

QR CODE