簡易檢索 / 詳目顯示

研究生: 呂政錡
Cheng-Chi Lu
論文名稱: 含 Urea 基團Triazine與 Triarylamine衍生物之新型凝膠分子於不同溶劑下凝集效應與光學性質影響之探討
New Gelators of Urea-Containing Triazine Derivatives and Triarylamine Derivative: Effects of Aggregation and Optical Features in Different Organic Solvents
指導教授: 蘇舜恭
Shuenn Kung Su
口試委員: 邱顯堂
Hsien Tang Chiu
邱士軒
Shih Hsuan Chiu
邱文英
Wen Yen Chiu
邱求三
Chyow San Chiou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 79
中文關鍵詞: 凝集凝膠氫鍵結自組裝尿素
外文關鍵詞: Hydrogen bonds, Self-assemble
相關次數: 點閱:348下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

1. 含 Urea 基團Triazine衍生物之新型凝膠分子於不同溶劑下凝集效應與光學性質影響之探討:
為了完成探索含 Urea 基團Triazine衍生物之新型凝膠分子,於不同有機溶劑下,其凝集效應與光學性質影響,此新型凝膠分子是合成成功且探索其不同有機溶劑下,凝膠之特性。在不同有機溶劑下,這些化合物被發現可形成凝膠態,例如:HEXANE等等。由於這些凝膠分子擁有延長的烷基鏈段,所以在非極性溶劑下其臨界凝膠濃度值很明顯的下降,且在極性溶劑下明顯的增加其凝膠化的合適性。這些熱可逆型凝膠是經由滴球測試法證實其熱穩定性試驗,並且進一步利用其他相關儀器完成其凝膠特性測試。在凝膠熱穩定性質試驗中,我們發現凝膠分子在Decalin與四氯化碳溶劑中,其凝膠分子含量越多,凝膠溶融溫度越高。在不同溶劑與不同含量之凝膠分子濃度下,FT-IR光譜的試驗證實了其分子間氫鍵結之存在,促使凝膠化的形成。而在不同溶劑下,溫度依靠UV/Vis和螢光光譜分析,凝膠分子顯現出不同的凝集狀態與螢光效應。在Decalin溶劑中,藍光與J凝集是被證實的。而在四氯化碳溶劑中,光遽滅效應與π-π堆疊也是被證實的。然而掃描式電子顯微鏡的使用,確實驗證了不同溶劑下會造成凝集型態的變化。在凝膠電導度的試驗中,發現此有機凝膠電解質與TBAP/THF電解質相比,表現出相當高的電導度。且凝膠電解質之電導度分別隨溫度上升與TBAP電解鹽濃度增加而上升。當溫度上升達到凝膠溶融溫度時,此有機凝膠電解質與TBAP/THF電解質相比,仍然表現出相當高的電導度。當TBAP電解鹽濃度增加超過5%時,凝膠化現象則會被抑制。而TBAP電解鹽與凝膠溶膠溫度的關係,經證實發現TBAP電解鹽影響凝膠化能力但不影響溶膠溫度。

2.含 Urea 基團Triarylamine衍生物於有機溶劑下,表現出凝膠化現象與螢光性:
一種創新的且含 Urea 基團Triarylamine衍生物之新型凝膠分子TOUPPD是成功被合成,並利用其自身分子間非共價鍵結的作用力,在不同有機溶劑下,使其凝膠化並探討其凝膠之特性。此熱可逆型凝膠是經由滴球測試法證實其熱穩定性試驗,並且進一步利用其他相關儀器完成其凝膠特性測試。在凝膠熱穩定性質試驗中,我們發現TOUPPD凝膠分子在Decalin溶劑中,其凝膠分子含量越多,凝膠溶融溫度越高。在溫度依靠UV/Vis和螢光光譜分析中,TOUPPD凝膠在Decalin溶劑中,表現出藍光與H凝集效應。而在不同溶劑與不同含量之凝膠分子濃度下,FT-IR光譜的試驗證實了其分子間氫鍵結之存在,促使凝膠化的形成。並利用原子力電子顯微鏡證實了其凝集型態的變化。在凝膠電導度與固態電解度的試驗中發現,此有機凝膠電解質與NaClO4/THF電解質相比,表現出相當高的電導度。且凝膠電解質之電導度隨NaClO4電解鹽濃度增加而上升。而在固態電導度方面,TOUPPD膜在摻雜已知濃度之TFA(Trifluoroacetic acid)後,電導度表現在2.5 × 10–4~3.5 × 10–6範圍之間,顯現出在摻雜後的TOUPPD膜表現出良好電導度特性。


1. New Gelators of Urea-Containing Triazine Derivatives: Effects of Aggregation and Optical Features in Different Organic Solvents
New gelators for urea-containing triazine derivatives were synthesized, and their gelation potential was examined using different organic solvents. These compounds were found to form the organogels with a variety of organic solvents, such as hexane and other solvents. The elongated alkyl tails of the gelators displayed an obvious decrease in the critical gelation concentrations of apolar solvents and an increase in the compatibility of gelation in polar solvents. The resulting thermo-reversible gels were characterized by using the dropping ball method and a number of other instruments. The melting temperature of the gels in decalin and CCl4 increased with the gelator concentrations.
The intermolecular hydrogen bonding of gelation in different organic solvents was observed using an FT-IR spectrometer.
Temperature-dependent UV-Vis and fluorescence analysis showed that the organogels displayed diverse aggregations and various fluorescence effects in different organic solvents. Blue fluorescence and J-aggregation in decalin and the quenched effect and π-π stacking in CCl4 were observed. Further, the morphological self-assembled feature in different organic solvents was studied with a scanning electron microscope (SEM), and the morphological features demonstrated that there were different aggregations in different solvents.
In conductivity electrolyte experiments, the organogel electrolytes exhibited high conductivity (σ) compared to the corresponding TBAP/THF solution. The conductivity of the gel electrolytes increased with the concentration of the electrolyte salts and temperature. When the sol-gel temperature was achieved, a high ion conductivity was observed compared to the corresponding TBAP/THF solution. When the ratio of the added electrolyte salts exceeded 5%, gelation was inhibited. Furthermore, the effect of the electrolyte salts on the Tm of the gel was confirmed. The added electrolyte salts affected the gelation ability, but did not affect the sol-gel temperature.

2. Gelation of a Highly Fluorescent Urea-Containing Triarylamine Derivative: N, N, N′, N′-tetrakis (p-octadecylureido-phenyl)-p- phenylenediamine in Organic Solvents
An innovative gelator was synthesized by non-covalent interactions from triarylamine derivative as N, N, N′, N′-tetrakis (p-octadecylureido-phenyl)-p-phenylenediamine (TOUPPD), and its gelation potential was examined in different organic solvents. The resulting thermo-reversible gel was characterized by using the dropping ball method and a number of other methods. The melting temperature of the gel increased with the TOUPPD concentration.
Temperature-dependent UV-Vis and fluorescence analysis revealed that the gel exhibited blue fluorescence and H-aggregation in decalin. Intermolecular hydrogen bonding in the TOUPPD gel was observed from FT-IR spectrometry. The morphological self-assembled feature of the gel was studied by atomic force microscopy (AFM).
In conductivity and solid electrolyte experiments, the organogel electrolytes exhibited high conductivity (σ) comparable to the corresponding NaClO4/THF solution. The conductivity of the gel electrolytes increased with the concentration of the electrolyte salt. The TOUPPD film exhibited well-defined conductivity of 2.5 × 10–4~3.5 × 10–6 S cm–1 in the solid state upon addition of a known concentration of trifluoroacetic acid (TFA).

中文摘要………………………………………………………………..Ⅰ Abstract………………..…………………...…………………………..Ⅳ Index…………………………………………………..………………..Ⅴ 致謝……………………………………………………………………..Ⅹ Figure Captions………………….…………..……………..………….ⅩⅠ Tables…………………………………………………………………...ⅩⅣ 1. Introduction…………………………………………………………..1 2. Literature Review…………………………………………..………..3 2.1. Definition of a Gel………………………………………………3 2.2. Low molecular weight gelators (LMWGs)……………………...4 2.3. How to form a gel………………………………………………5 2.4. Gels based on Various Types of Internolecular interactions…….6 2.5. Gelation with Small Molecules: Formation Mechanism……….7 2.6. The Various LMWGs…………………………………………...7 2.6.1. The Phthalocyanines-based LMWG…………………..7 2.6.2. The Perylene Bisimide-based LMWG………………...8 2.6.3. The Amide- and Urea-Type Gelators………………….8 3. Experimental Section……………………………………………….15 3.1. Materials and Methods………………………………………....15 3.2. Critical Gelation Concentration………………………………..16 3.3. Dropping Ball Experiment……………………………………..17 3.4. Fourier Transformed Infrared Spectroscopy…………………...17 3.5. Temperature-Dependent UV/ Vis and Fluorescence Spectroscopy …………………………………………………………………………17 3.6. Scanning Electron Microscope…………………………………18 3.7. Atomic Force Microscopy……………………………………...18 3.8. Conductivities of Gel Electrolytes and Solid Electrolytes……..18 3.9. Syntheses.....................................................................................18 3.9.1. 2, 4, 6-tris (p-N'-laurylureido-anilino) -1, 3, 5-triazine……18 3.9.2. 2, 4, 6-tris (tert-Butyl N-(4-anilino) carbamate) triazine….19 3.9.3. 2, 4, 6-tris (p-N'-amino-anilino) triazine (Compound 4)….19 3.9.4. 2, 4, 6-tris (p-N'-Octadecylureido- anilino)-1, 3, 5- triazine(TOUAT)…………………………..…….……….…20 3.9.5. 2, 4, 6-tris (p-N'-laurylureido-anilino) -1, 3, 5-triazine (TLUAT)……………………………………….…………...20 3.9.6. N,N,N',N'-tetrakis(p-nirtophenyl)-p-phenylenediamine (TNPPD)………………………………………………….……21 3.9.7. N,N,N',N'-tetrakis(p-aminophenyl)-p-phenylenediamine (TAPPD)……………………………………………………….22 3.9.8. N,N,N',N'-tetrakis(p-octadecylureido-phenyl)-p-phenylenediamine (TOUPPD)…………………………………..…………22 4. Results and Discussion………….…………………………….……24 4.1.1. Preparation of the New Gelators of Urea-Containing Triazine Derivatives…………………………………………………………24 4.1.2. Gelation of Organic Solvents: Critical Gelation Concentration (C.G.C.)……………………………………………………………..25 4.1.3. Thermotropic Behavior of the Gels…………...……..……...…27 4.1.4. FT-IR Experiments…………………………………..…………28 4.1.5. Optical Features of the Gels……………………………………30 4.1.6. Morphological Features of Gel…………....……………….…..33 4.1.7. Conductivities of Gel Electrolytes….………………………….36 4.2.1. Preparation of the Gelation of A Highly Fluorescent Urea-Containing Triarylamine Derivative………………..……39 4.2.2. Gelation of Organic Solvents: Critical Gelation Concentration (C.G.C.)………………………….……………………………..40 4.2.3. Thermotropic Behavior of the Gels…………...……..……...…42 4.2.4. FT-IR Experiments…………………………………..…………43 4.2.5. Optical Features of the Gels……………………………………44 4.2.6. Morphological Features of Gel…………....……………….…..47 4.2.7. Conductivities of Gel Electrolytes and Solid Electrolytes……49 5. Conclusion……………………………….…………….….……….51 5.1. New Gelators of Urea-Containing Triazine Derivatives: Effects of Aggregation and Optical Features in Different Organic Solvents……………………………………………….51 5.2. Gelation of A Highly Fluorescent Urea-Containing Triarylamine Derivative: N, N, N′, N′-tetrakis (p-octadecylureido- phenyl)-p- phenylenediamine in Organic Solvents…………………………………………...…52 6. References…………………………..….…………………...….…..54 7. Supporting information…………………………………………….62 作者簡介………………………………………………………………..78 期刊論文著作…………………………………………………………..79

(1) Percec, V.; Ungar, G.; Peterca, M. Science 2006, 313, 55–56.
(2) Estroff, L.; Hamilton, A.D. Chem. Rev. 2004, 104, 1201–1217.
(3) van Esch, J.H.; Feringa, B.L. Angew. Chem., Int. Ed. 2000, 39, 2263–2266.
(4) Abdallah, D.J.; Weiss, R.G. Adv. Mater. 2000, 12, 1237–1247.
(5) Oda, R.; Huc, I.; Candau, S.J. Angew. Chem., Int. Ed. 1998,
37, 2689–2691.
(6) Van Esch, J.H.; De Feyter, S.; Kellogg, R.M.; De Schryver, F.; Feringa, B.L. Chem. Eur. J. 1997, 3, 1238–1243.
(7) Yoza, K.; Amanokura, N.; Ono, Y.; Akao, T.; Shinmori, H.; Takeuchi, M.; Shinkai, S.; Reinhoudt, D.N. Chem. Eur. J. 1999, 5, 2722–2729.
(8) Beck, J.B.; Rowan, S.J. J. Am. Chem. Soc. 2003, 125, 13922–13923.
(9) Van Esch, J.H.; Feringa, B.L. Angew. Chem., Int. Ed. 2000, 39, 2263–2266.
(10) Schoonbeek, F.S.; van Esch, J.H.; Feringa, B.L. Angew. Chem., Int. Ed. 1999, 38, 1393–1397.
(11) Schoonbeek, F.S.; van Esch, J.H.; Hulst, R.; Kellogg, R.M.; Feringa, B.L. Chem. Eur. J. 2000, 6, 2633–2643.
(12) Shirakawa, M.; Kawano, S.-I.; Fujita, N.; Sada, K.; Shinkai, S. J. Org. Chem. 2003, 68, 5037–5044.
(13) Dulic´, D.; van der Molen, S.J.; Kudernac, T.; Jonkman, H.T.; de Jong, J.J.D.; Bowden, T.N.; van Esch, J.; Feringa, B.L.; van Wees, B.; J. Phys. Rev. Lett. 2003, 91, 207402.
(14) de Jong, J.J.D.; Lucas, L.N.; Kellogg, R.M.; van Esch, J.H.; Feringa, B.L. Science 2004, 304, 278–281.
(15) Varghese, R.; George, S.J.; Ajayaghosh, A. Chem. Commun. 2005, 593–595.
(16) Ajayaghosh, A.; George, S.J. J. Am. Chem. Soc. 2001, 123, 5148–5149.
(17) Ajayaghosh, A.; George, S.J.; Praveen, V.K. Angew. Chem., Int. Ed. 2003, 42, 332–335.
(18) Sugiyasu, K.S.; Fujita, N.; Shinkai, S. Angew. Chem., Int. Ed. 2004, 43, 1229–1232.
(19) Tamaru, S.-I.; Uchino, S.-Y.;Takeuchi, M.; Ikeda, M.; Hatano, T.; Shinkai, S. Tetrahedron Lett. 2002, 43, 3751–3755.
(20) Van Nostrum, C.F.; Picken, S.; Schouten, A.-J.; Nolte, R.J.M. J. Am. Chem. Soc. 1995, 117, 9957–9965.
(21) Engelkamp, H.; Middelbeek, S.; Nolte, R.J.M. Science 1999, 284, 785–788.
(22) Wu¨rthner, F. Chem. Commun. 2004, 1564–1579.
(23) Paolo, S.; Tiziana, M.; Giumanini, A.G. Tetrahedron 2001, 57, 9033.
(24) Ajayaghosh, A.; Praveen, V.K.; Vijayakumar, C. Chem. Soc. Rev. 2008, 37, 109–122.
(25) Ajayaghosh, A.; Praveen, V.K. Acc. Chem. Res. 2007, 40, 644–656.
(26) Hoeben, F.J.M.; Jonkheijm, P.; Meijer, E.W.; Schenning, A.P.H.J. Chem. Rev. 2005, 105, 1491–1546.
(27) Terech, P.; Weiss, R.G. Chem. Rev. 1997, 97, 3133–3159.
(28) Abdallah, D.J.; Weiss, R.G. Adv. Mater. 2000, 12, 1237–1247.
(29) See the special issue of Langmuir on self-assembled fibrillar networks. Langmuir 2002, 12, 7095–7244.
(30) Yazhou Zhang, Junfeng Xiang, Yalin Tang, Guangzhi Xu, Wenpeng Yan. Chem. Letters. 2006, 35, 1316-1317.
(31) Jancy, B.; Asha, S.K.; Chem. Mater 2008, 20, 161-181.
(32) Michihiro Shirakawa, Shin-ichiro Kawano, Norifumi Fujita, Kazuki Sada, Seiji Shinkai. J. Org. Chem. 2003, 68, 5037-5044.
(33) Maeda, H.; Haketa, Y.; Nakanishi, T. J. Am. Chem. Soc, 2007, 129, 13661.
(34) Steed, J.W. Chem. Commun., 2006, 2637-2649.
(35) Steed, J.W. Chem. Commun., 2008, 2644–2646.
(36) Becker, T.; Goh, C. Y.; Jones, F.; McIldowie, M.J.; Mocerino, M. and Ogden, M. I. Chem. Commun., 2008, 3900-3902.
(37) Stanley, C. E.; Clarke, N.; Anderson, K. M.; Elder, J. A.; Lenthall, J. T. and Steed, J. W. Chem. Commun., 2006, 3199-3201.
(38) Graham, T. Phil. Trans. Roy. Soc. 1861, 151, 183-224.
(39) Jordan Lloyd, D. In Colloid Chemistry by Alexander, J. 1926, vol 1, 767-782, The Chemical Catalog Co, New York.
(40) Flory, J.P. Faraday Discuss. Chem. Soc. 1974, 57, 7-18.
(41) Gelbart, W.M.; Ben-Shaul, A. J. Phys. Chem. 1996, 100, 13169-13189.
(42) Weiss, R.G.; Terech, P. Molecular gels: materials with self-assembled fibrillar networks, Springer 2006, Dordrecht. ISBN 1-4020-3352-4.
(43) Gesser, H.D.; Goswami, P.C. Chem. Rev. 1989, 89, 765–788.
(44) Dusek, K. Responsive Gels: Volume Transitions (Adv. Polym. Sci. series) 1993, vol, 109-110.
(45) Daganli, R. Chem. & Eng. News 1997, 23, 26.
(46) Dorski, C.M.; Doyle, F.J.; Peppas, N.A. Polym. Mater. Sci. Eng. Proc. 1997, 76, 281.
(47) Boury, B.; Corriu, R.J.P.; Le Strat, V.; Delord, P.; Nobili, M. Angew. Chem., Int. Ed. 1999, 38, 3172–3175.
(48) Saunders, J.M.; Goodwin, J.W.; Richardson, R.M.; Vincent, B. J. Phys. Chem. B 1999, 103, 9211–9218.
(49) Ball, P. H2O: A Biography of Water, 1999, Weidenfeld and Nicholson, London.
(50) Water: A Comprehensive Treatise Vol. 1-7; 1982, Franks, R.; ed.; Plenum Press, New York.
(51) Loos de, M.; Feringa, B.L.; Van Esch, J.H. Eur. J. Org. Chem. 2005, 3615-3631.
(52) Estroff, L.; Hamilton, A.D. Chem. Rev. 2004, 104, 1201-1217.
(53) Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328-4343
(54) Terech, P.; Weiss, R.G. Chem. Rev. 1997, 97, 3133-3159.
(55) Van Esch, J.; Schoonbeek, F.; De Loos, M.; Veen, E.M.; Kellogg, R.M.; Feringa, B.L. Supramolecular Science: where it is and where it is going 1999, Nato ASI Series C: Mathematical and Physical Science, Vol. 527, 233-259.
(56) Brotin, T.; Untermöhlen, R.; Fages.; Bouas-Laurent, H.; Desvergne, J-P. J. Chem. Soc., Chem. Commun. 1991, 416–418.
(57) Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H. Angew. Chem., Int. Ed. 1996, 35, 1949-1951.
(58) Atkins, P.W. Physical Chemistry 5nd ed., 1994, Oxford University Press, Oxford. ISBN 0-19-855730-2.
(59) Visintin, R.F.G.; Lapasin, R.; Vignati, E.; D’Antona, P.; Lockhart, T.P. Langmuir 2005, 21, 6240-6249.
(60) Tamaru, S.-i.; Nakamura, M.; Takeuchi, M.; Shinkai, S. Org. Lett. 2001, 3, 3631–3634.
(61) Frank Würthner; Bertil Hanke; Marina Lysetska; Geoffrey Lambright; Gregory S. Harms. Org. Lett. 2005, 7, 967–970.
(62) Lehn J.M.; Supramolecular chemistry: concepts and perspectives.1995, VCH, Weinheim.
(63) Schneider, H.J.; Yatsimirsky, A.; Principles and methods in supramolecular chemistry.1996, Wiley, Chichester.
(64) Doig, A.I.; Wiliams, D.H.; J. Am. Chem. Soc. 1992, 114, 338
(65) Di Capua, F.M.; Swaminathan, S.; Beveridge, D.L.; J. Am. Chem. Soc. 1991, 113, 6145.
(66) Liu, R.; Shirota, Y.; Osada, Y.; Polym. Adv. Tech. 2000, 11, 512.
(67) Hanabusa, K.; Koto, C.; Kimura, M.; Shirai, H.; Kakehi, A. Chem. Lett. 1997, 429-430.
(68) Hanabusa, K.; Kawakami, A.; Kimura, M.; Shirai, H.; Chem. Lett. 1997, 191-192.
(69) Heeres, A.; van der Pol. C.; Stuart, M; Friggeri, A.; Feringa, B.L.; van Esch. J.; J. Am. Chem. Soc. 2003, 125, 14252-14253.
(70) van Bommel, K.J.C.; van der Pol. C.; Muizebelt, I.; Friggeri, A.; Heeres, A.; Metsma, A.; Feringa, B.L.; van Esch. J.; Angew. Chem., Int. Ed. 2004, 43, 1663–1667.
(71) Yasuda, Y.; Takebe, Y.; Fukumoto, M.; Inada, H.; Shirota, Y.; Adv. Mater. 1996, 8, 740-741.
(72) Kamiyama, T.; Yasuda, Y.; Shirota, Y.; Polym. J. 1999, 31, 1165.
(73) Yasuda, Y.; Kamiyama, T.; Shirota, Y.; Electrochim Acta. 2000, 45, 1537-1544.
(74) van Esch, J.; Kellogg, R.M.; Feringa, B.L.; Tetrahedron Lett. 1996, 38, 281-284.
(75) van Esch, J.; De Feyter, S.; Kellogg, R.M.; De Schryver, F.; Feringa, B.L.; Chem. Eur. J. 1997, 3, 1238-1243.
(76) de Loos, M.; van Esch, J.; Stokroos, I., Kellogg, R.M.; Feringa, B.L.; J. Am. Chem. Soc. 1997, 119, 12675-12676.
(77) van Esch, J.; Schoonbeek, F.; de Loos, M.; Kooilman, H.; Spek, A.L.; Kellogg, R.M.; Feringa, B.L.; Chem. Eur. J. 1999, 5, 937-950.
(78) van der Laan, S.; Feringa, B.L.; Kellogg, R.M.; van Esch, J.; Langmuir 2002, 18, 7136-7140.
(79) de Loos, M.; Ligtenbarg, A.G.J.; van Esch, J.; de Loos, M.; Kooijman, H.; Spek, A.L.; Hage, R.; Kellogg, R.M.; Feringa, B.L.; Eur. J. Org. Chem. 2000, 22, 3675–3678.
(80) Mammen, M.; Simanek, E.E.; Whitesides, G.M.; J. Am. Chem. Soc. 1996, 118, 12614–12623.
(81) Takahashi, A.; Sakai, M.; Kato, T. Polym. J. 1980, 12, 335–341.
(82) Tan, H.M.; Moet, A.; Baer, E. Macromolecular 1983, 16, 28–34.
(83) van Esch, J.H.; Schoonbeek, F.; De Loos, M.; Kooijman, H.; Spek, A.L.; Kellogg, R.M.; Feringa, B.L. Chem. Eur. J. 1999, 5, 937–950.
(84) Schoonbeek, F.; van Esch, J.H.; Hulst, R.; Kellogg, R.M.; Feringa, B.L. Chem. Eur. J. 2000, 6, 2633–2643.
(85) Dobrowolsky, J.Cz.; Jamorz, M.H.; Mazurek, A.P. Vibr. Spectosc. 1994, 8, 53.
(86) Mido, Y. Spectrochim. Acta 1973, 29A, 431–438.
(87) Jadzyn, J.; Stockhausen, M.; Zywucki, B. J. Phys. Chem. 1987, 91, 754–757.
(88) Schoonbeek, F.S.; van Esch, J.H.; Wegewijs, B.; Rep, D.B.A.; de Haas, M.P.; Klapwijk, T.M.; Kellogg, R.M.; Feringa, B.L.; Angew. Chem., Int. Ed. 1999, 38, 1393–1397.
(89) Behera, P.K.; Mukherjeec, T.; Mishra, A.K.; J. Lumin. 1995, 65, 137–142.
(90) Saha, S.K.; Dogra, S.K.; J. Lumin. 1997, 75, 117–125.
(91) Shimamori, H.; Musasa,; H. J. Phys. Chem. 1996, 100, 5343–5348.
(92) El-Daly, S.A.; Spectrochimica Acta Part A; 1999, 55, 143–152.
(93) Bogumil, Z.; Gilles, D.; Can. J. Chem. 1982, 60, 2442-2450.
(94) Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S.; J. Am. Chem. Soc. 1994, 116, 6664–6676.
(95) van Esch, J.H.; De Feyter, S.; Kellogg, R.M.; De Schryver, F.; Feringa, B.L.; Chem. Eur. J. 1997, 3, 1238–1243.
(96) van Gorp, J.J.; Vekemans, J.A.J.M.; Meijer, E.W.; J. Am. Chem. Soc. 2002, 124, 14759–14769.
(97) Gedde, U. Polymer Physics; Kluwer: Dordrecht, 1995; ISBN: 0-412-62640-3.
(98) Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S.; Chem. Commun. 2002, 4, 374–375.
(99) Takahashi, A.; Sakai, M.; Kato, T.; Polym. J. 1980, 12, 335–341.
(100) Meng, Y.; Yang, Y.; Electrochem. Commun. 2007, 9, 1428–1433.
(101) Marken, F.; Hayman, C.M.; Bulman, Page, P.C.; Electrochem. Commun. 2002, 4, 462.
(102) Ozer, N.; Tepehan, F.; Bozkurt, N.; Thin Solid Films 1992, 219, 193.
(103) Inaba, H.; Iwaku,M.; Nakase,K.;Yasukawa,H.; Seo, I.; Oyama, N.; Electrochim. Acta 1995, 40, 227.
(104) Slierova, R.; Kalovda, L.; Neher, D.; Chem. Mater. 1998, 10, 2284–2292.
(105) Ogura, K.; Patil, R.C.; Shiigi, H.; Tonosaki, T.; Nakayama, M.; J. Polym. Sci. A Polym. Chem. 2000, 38, 4343–4352.
(106) Lokshin, N.A.; Pyshkina, O.A.; Golubev, V.B.; Sergeyev, V.G.; Zezin, A.R.; Kabanov, V.A.; Levon, K.; Piankijsakul, S. Macromolecules 2001, 34, 5480–5486.
(107) Norris, I.D.; Kane-Maguire, L.A.P.; Wallace, G.G. Macromolecules 2000, 33, 3237–3247. GSCH 340828—29/8/2008—RANANDAN—306199——Style 4 Supramolecular Chemistry 7.
(108) Zhang, Y.; Xiang, J.; Tang, Y.; Xu, G.; Yan, W.; Chem. Lett. 2006, 35, 1316–1317.
(109) Tsou,C.C.; Sun, S.S.; Org. Lett. 2006, 8, 387–390.
(110) Jancy, B.; Asha, S.K.; Chem. Mater. 2008, 20, 161–181.
(111) Michihiro, S.; Shin-ichiro, K.; Norifumi, F.; Kazuki, S.; Seiji, S.; J. Org. Chem. 2003, 68, 5037–5044.

QR CODE